[1] R. A. Betensky and D. M. Finkelstein, A non-parametric maximum
likelihood estimator for bivariate interval censored data, Stat. Med.
18 (1999), 3089-3100.
[2] C. De Boor, A Practical Guide to Splines, Springer, New York,
2001.
[3] I. D. Diamond, J. W. McDonald and I. H. Shah, Proportional hazards
models for current status data: Application to the study of
differentials in age at weaning in Pakistan, Demography 23 (1986),
607-620.
[4] I. D. Diamond and J. W. McDonald, Analysis of current status data,
In Demographic Applications of Event History Analysis (J. Trussell,
R. Hankinson and J. Tilton, eds.), Oxford University Press, (1991),
231-252.
[5] D. M. Finkelstein and R. A. Wolfe, A semiparametric model for
regression analysis of interval-censored failure time data,
Biometrics 41 (1985), 933-945.
[6] R. Gentleman and A. C. Vandal, Computational algorithms for
censored-data problems using intersection graphs, J. Comput. Graph.
Statist. 10 (1985), 403-421.
[7] W. B. Goggins and D. M. Finkelstein, A proportional hazards model
for multivariate interval-censored failure time data, Biometrics 56
(1985), 940-943.
[8] P. Groeneboom and J. A. Wellner, Information Bounds and
Nonparametric Maximum Likelihood Estimation, Birkhäuser, Basel,
1992.
[9] D. G. Hoel and H. E. Walburg, Statistical analysis of survival
experiments, Journal of the National Cancer Institute 49 (1972),
361-372.
[10] J. Huang and J. A. Wellner, Asymptotic normality of the NPMLE of
linear functionals for interval censored data, case 1, Statist. Neer.
49 (1995), 153-163.
[11] M. Jamshidian, On algorithms for restricted maximum likelihood
estimation, Comp. Statist. Data Anal. 45 (2004), 137-157.
[12] N. P. Jewell, H. Malani and E. Vittinghoff, Nonparametric
estimation for a form of doubly censored data with application to two
problems in AIDS, J. Amer. Statist. Assoc. 89 (1994), 7-18.
[13] M. Lu, Y. Zhang and J. Huang, Estimation of the mean function
with panel count data using monotone polynomial splines, Biometrika 94
(2007), 705-718.
[14] M. H. Maathuis, Reduction algorithm for the NPMLE for the
distribution function of bivariate interval-censored data, J. Comput.
Graph. Statist. 14 (2005), 352-362.
[15] R. B. Nelsen, An Introduction to Copulas, Springer, New York,
2006.
[16] L. Schumaker, Spline Functions: Basic Theory, Wiley, New York,
1981.
[17] S. C. Shiboski and N. P. Jewell, Statistical analysis of the time
dependence of HIV infectivity based on partner study data, J. Amer.
Statist. Assoc. 87 (1992), 360-372.
[18] J. H. Shih and T. A. Louis, Inference on the association
parameter in copula models for bivariate survival data, Biometrics 51
(1995), 1384-1399.
[19] L. Sun, L. Wang and J. Sun, Estimation of the association for
bivariate interval censored failure time data, Scand. J. Statist. 33
(2006), 637-649.
[20] A. W. van der Vaart and J. A. Wellner, Weak Convergence and
Empirical Processes, Springer, New York, 1996.
[21] A. W. van der Vaart, Asymptotic Statistics, Cambridge University
Press, Cambridge, 1998.
[22] W. Wang and A. A. Ding, On assessing the association for
bivariate current status data, Biometrika 87 (2000), 879-893.
[23] J. A. Wellner, Interval censoring case 2: Alternative hypotheses,
In Analysis of Censored Data (H. L. Koul and J. V. Deshpande, eds.)
(1995), 271-291.
[24] J. A. Wellner and Y. Zhang, Likelihood-based semiparametric
estimation methods for panel count data with covariates, Ann. Statist.
28 (2007), 2106-2142.
[25] G. Y. Wong and Q. Yu, Generalized MLE of a joint distribution
function with multivariate interval-censored data, J. Multivariate
Anal. 69 (1999), 155-166.
[26] Y. Wu and Y. Zhang, Partially monotone tensor spline estimation
of the joint distribution function with bivariate current status data,
Tech. Rep., Department of Biostatistics, University of Iowa, USA,
2010.
[27] Y. Zhang and M. Jamshidian, On algorithms for the non-parametric
maximum likelihood estimator of the failure function with censored
data, J. Comput. Graph. Statist. 13 (2004), 123-140.
[28] Y. Zhang, L. Hua and J. Huang, A spline-based semiparametric
maximum likelihood estimation for the cox model with
interval-censored data, Scand. J. Statist. 37 (2010), 338-354.