References

QUANTILE VERSIONS OF HOLT-WINTERS FORECASTING ALGORITHMS


[1] B. Abraham and J. Ledolter, Forecast functions implied by autoregressive integrated moving average models and other related forecast procedures, International Statistical Review 54 (1986), 51-66.

[2] B. Abraham and J. Ledolter, On a theory of computation over the real numbers; NP completeness, recursive functions and universal machines, A. M. S. Bulletin 21 (1989), 1-46.

[3] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd ed., Springer, New York, 1991.

[4] R. G. Brown, Smoothing, Forecasting and Prediction, Prentice-Hall, Englewood Cliffs, 1963.

[5] C. Chatfield, Some recent developments in time series analysis, Journal of Royal Statistical Society 140 (1977), 492-510.

[6] C. Chatfield, Time-Series Forecasting, Chapman & Hall/CRC, Boca Raton, 2001.

[7] E. S. Gardner, A simple method of computing prediction intervals for time series forecasts, Management Science 34 (1977), 541-546.

[8] E. S. Gardner, Exponential smoothing: The state of the art (with discussion), Journal of Forecasting 4 (1985), 1-38.

[9] E. S. Gardner and E. McKenzie, Model identification in exponential smoothing, Journal of the Operational Research Society 39 (1988), 863-867.

[10] E. S. Gardner, Exponential smoothing: The state of the art - Part II, International Journal of Forecasting 22 (2006), 637-666.

[11] P. J. Harrison, Exponential smoothing and short-term sales forecasting, Management Science 13 (1967), 821-842.

[12] C. C. Holt, Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages, ONR Research Memorandum 52, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, 1957.

[13] R. J. Hyndman, A. B. Koehler, R. D. Snyder and S. Grose, A state space framework for automatic forecasting using exponential smoothing methods, International Journal of Forecasting 18 (2002), 439-454.

[14] P. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, 3rd ed., McGraw-Hill, New York, 2006.

[15] R. Koenker, Quantile Regression, Cambridge University Press, New York, 2005.

[16] S. Kotz, T. J. Kozubowski and K. Podgórski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhäuser, Boston, 2001.

[17] S. Makridakis and M. Hibon, Accuracy of forecasting: An empirical investigation, (with discussion), Journal of the Royal Statistical Society (A) 142 (1979), 97-145.

[18] S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen and R. Winkler, The accuracy of extrapolation (time series) methods: Results of a forecasting competition, Journal of Forecasting 1 (1982), 111-153.

[19] S. Makridakis and M. Hibon, Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy, International Journal of Forecasting 7 (1991), 317-330.

[20] E. McKenzie, A comparison of some standard seasonal forecasting systems, The Statistician 25 (1976), 3-14.

[21] J. F. Muth, Optimal properties of exponentially weighted forecasts, Journal of American Statistical Association 55 (1960), 299-306.

[22] M. Nerlove and S. Wage, Some observations on adaptive forecasting, Management Science 10 (1964), 107-224.

[23] J. W. Taylor and D. W. Bunn, A quantile regression approach to generating prediction intervals, Management Science 45 (1999), 225-237.

[24] J. W. Taylor, Forecasting daily supermarket sales using exponentially weighted quantile regression, European Journal of Operational Research 178 (2007), 154-167.

[25] J. W. Taylor, Using exponentially weighted quantile regression to estimate value at risk and expected shortfall, Journal of Financial Econometrics 6 (2008), 382-406.

[26] H. Theil and S. Wage, Some observations on adaptive forecasting, Management Science 10 (1964), 198-206.

[27] A. A. Trindade, Y. Zhu and B. Andrews, Time series models with asymmetric Laplace innovations, Journal of Statistical Computation and Simulation 80 (2010), 1317-1333.

[28] P. R. Winters, Forecasting sales by exponentially weighted moving averages, Management Science 6 (1960), 324-342.