[1] A. Agresti, A simple diagonals-parameter symmetry and
quasi-symmetry model, Statistics and Probability Letters 1 (1983),
313-316.
[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice, The MIT Press,
Massachusetts, Cambridge, 1975.
[3] A. H. Bowker, A test for symmetry in contingency tables, Journal
of the American Statistical Association 43 (1948), 572-574.
[4] H. Caussinus, Contribution à l’analyse statistique des
tableaux de corrélation, Annales de la Faculté des Sciences de
l’Université de Toulouse 29 (1965), 77-182.
[5] L. A. Goodman, Multiplicative models for square contingency tables
with ordered categories, Biometrika 66 (1979), 413-418.
[6] N. Miyamoto, W. Ohtsuka and S. Tomizawa, Linear
diagonals-parameter symmetry and quasi-symmetry models for cumulative
probabilities in square contingency tables with ordered categories,
Biometrical Journal 46 (2004), 664-674.
[7] A. Stuart, A test for homogeneity of the marginal distributions in
a two-way classification, Biometrika 42 (1955), 412-416.
[8] K. Tominaga, Nippon no Kaisou Kouzou (Japanese Hierarchical
Structure). University of Tokyo Press, Tokyo, 1979 (in Japanese).
[9] S. Tomizawa, Decompositions for 2-ratios-parameter symmetry model
in square contingency tables with ordered categories, Biometrical
Journal 29 (1987a), 45-55.
[10] S. Tomizawa, Diagonal weighted marginal homogeneity models and
decompositions for linear diagonals-parameter symmetry model,
Communications in Statistics-Theory and Methods 16 (1987b),
477-488.
[11] S. Tomizawa, Decompositions for conditional symmetry model into
palindromic symmetry and modified marginal homogeneity models,
Australian Journal of Statistics 31 (1989), 287-296.
[12] S. Tomizawa, Diagonals-parameter symmetry model for cumulative
probabilities in square contingency tables with ordered categories,
Biometrics 49 (1993), 883-887.
[13] S. Tomizawa, N. Miyamoto and K. Yamamoto, Decomposition for
polynomial cumulative symmetry model in square contingency tables with
ordered categories, Metron 64 (2006), 303-314.
[14] S. Tomizawa, N. Miyamoto, K. Yamamoto and A. Sugiyama, Extensions
of linear diagonals-parameter symmetry and quasi-symmetry models for
cumulative probabilities in square contingency tables, Statistica
Neerlandica 61 (2007), 273-283.
[15] S. Tomizawa and K. Tahata, The analysis of symmetry and
asymmetry: Orthogonality of decomposition of symmetry into
quasi-symmetry and marginal symmetry for multi-way tables, Journal de
la Société Française de Statistique 148 (2007), 3-36.