References

DECOMPOSING ASYMMETRY INTO EXTENDED QUASI-SYMMETRY AND MARGINAL HOMOGENEITY FOR CUMULATIVE PROBABILITIES IN SQUARE CONTINGENCY TABLES


[1] A. Agresti, A simple diagonals-parameter symmetry and quasi-symmetry model, Statistics and Probability Letters 1 (1983), 313-316.

[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Massachusetts, Cambridge, 1975.

[3] A. H. Bowker, A test for symmetry in contingency tables, Journal of the American Statistical Association 43 (1948), 572-574.

[4] H. Caussinus, Contribution à l’analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l’Université de Toulouse 29 (1965), 77-182.

[5] L. A. Goodman, Multiplicative models for square contingency tables with ordered categories, Biometrika 66 (1979), 413-418.

[6] N. Miyamoto, W. Ohtsuka and S. Tomizawa, Linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables with ordered categories, Biometrical Journal 46 (2004), 664-674.

[7] A. Stuart, A test for homogeneity of the marginal distributions in a two-way classification, Biometrika 42 (1955), 412-416.

[8] K. Tominaga, Nippon no Kaisou Kouzou (Japanese Hierarchical Structure). University of Tokyo Press, Tokyo, 1979 (in Japanese).

[9] S. Tomizawa, Decompositions for 2-ratios-parameter symmetry model in square contingency tables with ordered categories, Biometrical Journal 29 (1987a), 45-55.

[10] S. Tomizawa, Diagonal weighted marginal homogeneity models and decompositions for linear diagonals-parameter symmetry model, Communications in Statistics-Theory and Methods 16 (1987b), 477-488.

[11] S. Tomizawa, Decompositions for conditional symmetry model into palindromic symmetry and modified marginal homogeneity models, Australian Journal of Statistics 31 (1989), 287-296.

[12] S. Tomizawa, Diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories, Biometrics 49 (1993), 883-887.

[13] S. Tomizawa, N. Miyamoto and K. Yamamoto, Decomposition for polynomial cumulative symmetry model in square contingency tables with ordered categories, Metron 64 (2006), 303-314.

[14] S. Tomizawa, N. Miyamoto, K. Yamamoto and A. Sugiyama, Extensions of linear diagonals-parameter symmetry and quasi-symmetry models for cumulative probabilities in square contingency tables, Statistica Neerlandica 61 (2007), 273-283.

[15] S. Tomizawa and K. Tahata, The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables, Journal de la Société Française de Statistique 148 (2007), 3-36.