[1] H. Bang and A. A. Tsiatis, Estimating medical costs with censored
data, Biometrika 87 (2000), 329-343.
[2] D. M. Dabrowska, Kaplan-Meier estimate on the plane, Ann. Statist.
16 (1988), 1475-1489.
[3] B. Efron, The two-sample problem with censored data, Proc. of the
Fifth Berkeley Sympos. Math. Statist. Probab. 4 (1967), 831-853.
[4] R. D. Gelber, R. S. Gelman and A. Goldhirsch, A quality-of-life
oriented endpoint for comparing therapies, Biometrics 45 (1989),
781-795.
[5] Y. Huang and T. A. Louis, Nonparametric estimation of the joint
distribution of survival time and mark variables, Biometrika 85
(1998), 785-798.
[6] Y. Huang, The two-sample problem with induced dependent
censorship, Biometrics 55(1999), 1108-1113.
[7] E. L. Kaplan and P. Meier, Nonparametric estimation from
incomplete observations, J. Amer. Statist. Assoc. 53 (1958),
457-481.
[8] D. Y. Lin, E. J. Feuer, R. Etzioni and Y. Wax, Estimating medical
costs from incomplete follow-up data, Biometrics 53 (1997),
419-434.
[9] D. Oakes, Biometrika Centenary: Survival analysis Biometrika 88
(2001), 90-142.
[10] R. L. Prentice and J. Cai, Covariance and survival function
estimation using censored multivariate failure time data, Biometrika
79 (1992), 495-512.
[11] R. L. Strawderman, Estimating the mean of an increasing
stochastic process at a censored stopping time, J. Amer. Statist.
Assoc. 95 (2000), 1192-1208.
[12] M. J. van der Laan, Efficient estimation in the bivariate
censoring model and repairing NPMLE, Ann. Statist. 24 (1996),
596-627.
[13] W. Wang and W. Well, Nonparametric estimators of the bivariate
survival function under simplified censoring conditions, Biometrika 84
(1997), 863-880.
[14] H. Zhao and A. A. Tsiatis, A consistent estimator for the
distribution of quality adjusted survival time, Biometrika 84 (1997),
339-348.