References

SAMPLING METHODS AND PARALLELISM INTO MONTE CARLO SIMULATION


[1] J. S. Ahn and P. Danzig, Packet: network simulation: Speedup and accuracy versus timing granularity, IEEE/ACM Transactions on Networking 4(5) (1996), 743-757.

[2] H. J. Alme, G. Rodrigue and G. Zimmerman, Domain decomposition for parallel Laser-Tissue Models with Monte Carlo Transport, Niederreiter, H. Spanier, J. eds., Monte Carlo and Quasi Monte Carlo Methods, pp. 86-97, Springer, 1998.

[3] A. D. Al-Nasser, L-Ranked set sampling: A generation procedure for robust visual sampling, Communications in Statistics: Simulation and Computation 36(1) (2007), 33-43.

[4] E. C. Anderson, Monte Carlo Methods for Inference in Population Genetic Models, 2001.

[5] A. N. Avramidis and P. L’Ecuyer, Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance-gamma model, Management Science 52(12) (2006), 1930-1944.

[6] J. Banks, J. S. Carson, B. L. Nelson and D. M. Nicol, Discrete- Event System Simulation (3rd edition), Upper Saddle River, New Jersey, Prentice Hall, 2001.

[7] V. D. Barnett, Random Negative Exponential Deviates 2-Pair-Wise Correlated Sets of 10,000 Observations: With Facilities for the Generation of Random Deviates on Any Integral Number of Degrees of Freedom, Cambridge University Press, New York, 2005.

[8] P. Bratley, B. L. Fox and L. E. Schrage, A Guide to Simulation (2nd edition), Springer-Verlag, New York, 1987.

[9] M. E. Brenner, Selective sampling-a technique for reducing sample size in simulations of decision making problems, Journal of Industrial Engineering 14 (1963), 291-296.

[10] R. M. Butler and E. L. Lusk, Monitors, message and clusters: The parallel programming system, Parallel Computing 20(4) (1994), 547-564.

[11] R. C. H. Cheng, The use of antithetic control variates in computer simulations, Winter Simulation Conference, Proceedings of the 13th conference on winter simulation, IEEE press, 1981.

[12] J. Chergui and P. F. Lavallée, Open MP Parallélisation multi tâches pour machines à mémoire partagée, Institut du developpement et des ressources en Informatique scientifique, 2006.

[13] R. Davidson and J. G. Mac Kinnon, Regression-based methods for using control and antithetic variates in Monte Carlo simulation, Journal of Econometrics 54 (1992), 203-222.

[14] T. R. Dell and J. L. Clutter, Ranked set sampling theory with order statistics background, Biometrics 28 (1972), 545-555.

[15] A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice, Springer Verlag, 2001.

[16] S. Drew and T. Homen de Mello, Some large deviations results for latin hypercube sampling, Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong and J. A. Joines, eds., 2005.

[17] R. Duncan, A survey of parallel computer architectures, Computer 23(2) (1990), 5-16.

[18] S. Ehrenfeld and S. Ben Tuvia, The efficiency of statistical simulation procedures, Technometrics 4 (1962), 257-275.

[19] G. S. Fishman, Monte-Carlo: Concepts, Algorithms and Applications, Springer-Verlag, 1997.

[20] Flynn, Very high speed computing systems, Proceeding IEEE 54(12) (1966), 1901-1909.

[21] A. Gest, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual Machine, a user guide and tutorial for network, Parallel Computing, The MIT press, 1994.

[22] L. K. Halls and T. R. Dell, Trial of ranked set sampling for forage yiels, Forest Science 12 (1966), 22-26.

[23] J. M. Hammersley and K. W. Morton, A new Monte Carlo technique: Antithetic variates, Proc. Cambridge Philos. Soc. 52 (1956), 449-475.

[24] N. Hoshino and A. Takemura, On reduction of finite sample variance by extended Latin hypercube sampling, Bernoulli 6(6) (2000), 1035-1050.

[25] M. G. Kendall and S. Babington, Randomness and random sampling numbers, J. Roy. Stat. Soc. 101 (1938), 147-166.

[26] J. P. C. Kleijnen, Design and analysis of simulations: Practical statistical techniques, Simulation 28 (1977), 81-90.

[27] C. Kwon and J. D. Tew, Strategies for combining antithetic variates and control variates in designed simulation experiments, Management science 40(8) 1994.

[28] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis (3rd ed.), McGraw-Hill, New-York, 2000.

[29] P. L’Ecuyer, Quasi Monte Carlo methods for simulation, Winter Simulation Conference, S. Chick, P. J. Sanchez, D. Ferrin and D. J. Morrice, eds., 2003.

[30] P. L’Ecuyer, C. Lécot and B. Tuffin, Randomized Quasi-Monte Carlo Simulation of Markov Chains with an Ordered State Space, H. Niederreiter and D. Talay, eds., Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer-Verlag, 2006.

[31] P. L’Ecuyer and E. Buist, Variance reduction in the simulation of call centers, L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol and R. M. Fujimoto, eds., Proceedings of the 2006 Winter Simulation Conference, 2006.

[32] Y. B. Lin, Parallel independent replicated simulation on networks of workstations, Proceedings of the 8th Workshop on Parallel and Distributed Simulation, ed., I. C. S. Press, 1994.

[33] W. L. Loh, On Latin hypercube sampling, The Annals of Statistics 24 (1996), 2058-2080.

[34] G. A. McIntyre, A method for unbiased selective sampling using ranked sets, Aust. J. Agri. Res. 3 (1952), 385-390.

[35] M. D. McKay, R. J. Beckman and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (1979), 239-245.

[36] W. J. Morokoff and R. E. Caflisch, Quasi random sequences and their discrepancies, SIAM J. Sci. Comput. Dec: (1994), 1571-1599.

[37] H. A. Muttlak, Parameters estimation in a simple linear regression using rank set sampling, Biometrical Journal 37(7) (2007), 799-810.

[38] B. L. Nelson and B. W. Schmeiser, Decomposition of some well known variance reduction technique, J. Stat. Comput. Simul. 23(3) (1986), 183-209.

[39] H. Niederreiter, Random number generation and quasi Monte-Carlo methods, Philadelphia: CBMS-SIAM 63, 1992.

[40] G. Okten, A probabilistic result on the discrepancy of a hybrid-Monte Carlo sequence and applications, Monte Carlo Methods and Applications 2(4) (1996), 255-270.

[41] G. Okten and A. Srinivasan, Parallel Quasi-Monte Carlo Applications on a Heterogeneous Cluster, K. T. Fang, F. J. Hickernell and H. Niederreiter, eds., Monte Carlo and Quasi- Monte Carlo Methods, Springer-Verlag, 2002.

[42] G. Okten, B. Tuffin and V. Bugaro, A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance, Journal of Complexity 22(4) (2006), 435-458.

[43] A. B. Owen, A central limit theorem for Latin hypercube sampling, J. Roy. Statist. Soc. Ser. B 54 (1992), 541-551.

[44] A. B. Owen, Monte Carlo variance of scrambled net quadrature, SIAM J. Numer. Anal. 34 (5) (1997), 1884-1910.

[45] M. Pidd, Computer Simulation in Management Science (4th ed.), Chichester: John Wiley and Sons, 1998.

[46] R. Robinson, Simulation: The practice of Model Development and Use, Chichester: John Wiley and Sons, 2004.

[47] C. P. Robert and G. Casella, Monte Carlo Statistical Methods (2nd ed.), Springer Science+Business Media Inc., 2004.

[48] K. W. Ross, D. Tsang and J. Wang, Monte-Carlo summation and integration applied to multichain queueing networks, J. Assoc. Comput. Mach. 41(6) (1994), 1110-1135.

[49] S. M. Ross, Simulation, 2nd ed., Academic Press, New York, 1997.

[50] R. Y. Rubinstein, Simulation and the Monte Carlo Method, Wiley, New York, 1981.

[51] E. Saliby, Understanding the variability of simulation results: An empirical study, J. Oper. Res. Soc. 41(4) (1990), 319-327.

[52] E. Saliby, Descriptive Sampling: A better approach to Monte Carlo simulation, J. Oper. Res. Soc. 41(12) (1990), 1133-1142.

[53] E. Saliby and R. J. Paul, Implementing descriptive sampling in three phase discrete event simulation models, J. Oper. Res. Soc. 44 (1993), 147-160.

[54] E. Saliby, Descriptive sampling: an improvement over Latin hypercube sampling, Winter Simulation Conference (1997), 230-233.

[55] E. Saliby and F. Pacheco, An empirical evaluation of sampling methods in risk analysis simulation: Quasi Monte Carlo, Descriptive Sampling, and Latin Hypercube sampling, Winter Simulation Conference (2002), 1606-1610.

[56] R. E. Shannon, Systems Simulation the Art and Science, Prentice-Hall, New-Jersey, 1975.

[57] D. B. Skililcorn, A taxonomy for computer architectures, IEEE Computer 21(11) (1985), 46-57.

[58] I. H. Sloan and S. Joe, Lattice Methods for Multiple Integration Clarendon Press, Oxford, 1994.

[59] M. Stein, Large sample properties of simulations using Latin hypercube sampling, Technometrics 29 (1987), 143-151.

[60] T. Ken Seng and P. P. Boyle, Applications of randomized low discrepancy sequences to the valuation of complex securities, J. Econom. Dynam. Control 24(11-12) (2000), 1747-1782.

[61] M. Tari and A. Dahmani, The three phase discrete event simulation using some sampling methods, IJAMAS 3D 05 (2005), 37-48.

[62] M. Tari and A. Dahmani, The refining of descriptive sampling, IJAMAS 3M05 (2005), 41-68.

[63] M. Tari and A. Dahmani, Flowshop simulator using different sampling methods, Operational Research: An International Journal 5 (2005), 261-272.

[64] M. Tari and A. Dahmani, Refined descriptive sampling: A better alternative to Monte Carlo simulation, Simulation Modelling Practice and theory 14 (2006), 143-160.

[65] S. J. E. Taylor, V. Hlupic, S. Robinson and J. Ladbrook, GroupSim: Investigating issues in collaborative simulation modeling, Oper. Res. Soc. Simul. (2002), 11-18.

[66] K. D. Tocher, The Art of Simulation, English University Press, London, 1963.

[67] B. Tuffin, Variance reductions applied to productform multi-class queueing networks, ACM Trans. Modeling and Computer Simulation 7(4) (1997), 478-500.

[68] B. Tuffin and L. M. Le Ny, Parallélisation d’une combinaison des méthodes de Monte-Carlo et quasi Monte-Carlo et application aux réseaux de files d’attente, RAIRO Operations Research 34 (2000), 85-98.

[69] MPI Forum: April MPI (A Message Passing Interface Standard), 1994.