[1] A. Agresti, Analysis of Ordinal Categorical Data, Wiley, New York,
(1984).
[2] A. Agresti, A simple diagonals-parameter symmetry and
quasi-symmetry model, Stat. Probab. Lett. 1 (1983), 313-316.
[3] J. Aitchison, Large-sample restricted parametric tests, J. Roy.
Statist. Soc. Ser. B 24 (1962), 234-250.
[4] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge,
Massachusetts, (1975).
[5] A. H. Bowker, A test for symmetry in contingency tables, J. Amer.
Statist. Assoc. 43 (1948), 572-574.
[6] H. Caussinus, Some concluding observations, Annales de la
Faculté des Sciences de l’Université de Toulouse,
Série 6(11) (2002), 587-591.
[7] H. Caussinus, Contribution à l’analyse statistique des
tableaux de corrélation, Annales de la Faculté des Sciences de
l’Université de Toulouse, Série 4(29) (1965), 77-182.
[8] J. N. Darroch and S. D. Silvey, On testing more than one
hypothesis, Ann. Math. Stat. 34 (1963), 555-567.
[9] M. Haber, Maximum likelihood methods for linear and log-linear
models in categorical data, Comput. Stat. Data Anal. 3 (1985),
1-10.
[10] J. B. Lang, On the partitioning of goodness-of-fit statistics for
multivariate categorical response models, J. Amer. Statist. Assoc. 91
(1996), 1017-1023.
[11] J. B. Lang and A. Agresti, Simultaneously modeling joint and
marginal distributions of multivariate categorical responses, J. Amer.
Statist. Assoc. 89 (1994), 625-632.
[12] P. McCullagh, A class of parametric models for the analysis of
square contingency tables with ordered categories, Biometrika 65
(1978), 413-418.
[13] C. R. Rao, Linear Statistical Inference and Its Applications, 2nd
edition, Wiley, New York, (1973).
[14] C. B. Read, Partitioning chi-square in contingency tables: A
teaching approach, Comm. Stat. Theory Methods 6 (1977), 553-562.
[15] K. Tahata, H. Yamamoto and S. Tomizawa, Orthogonality of
decompositions of symmetry into extended symmetry and marginal
equimoment for multi-way tables with ordered categories, Aust. J.
Stat. 37 (2008), 185-194.
[16] S. Tomizawa and K. Tahata, The analysis of symmetry and
asymmetry: Orthogonality of decomposition of symmetry into
quasi-symmetry and marginal symmetry for multi-way tables, Journal de
la Société Francaise de Statistique 148 (2007), 3-36.
[17] S. Tomizawa, Orthogonal decomposition of point-symmetry model for
two-way contingency tables, J. Statist. Plann. Inference 36 (1993),
91-100.
[18] S. Tomizawa, A decomposition of conditional symmetry model and
separability of its test statistic for square contingency tables,
SankhyÄ, Ser. B 54 (1992), 36-41.
[19] S. Tomizawa, Decompositions for 2-ratios-parameter symmetry model
in square contingency tables with ordered categories, Biom. J. 29
(1987), 45-55.
[20] H. Yamamoto, T. Iwashita and S. Tomizawa, Decomposition of
symmetry into ordinal quasi-symmetry and marginal equimoment for
multi-way tables, Aust. J. Stat. 36 (2007), 291-306.