References

DECOMPOSITION OF SYMMETRY USING TWO-RATIOS-PARAMETER SYMMETRY MODEL AND ORTHOGONALITY FOR SQUARE CONTINGENCY TABLES


[1] A. Agresti, Analysis of Ordinal Categorical Data, Wiley, New York, (1984).

[2] A. Agresti, A simple diagonals-parameter symmetry and quasi-symmetry model, Stat. Probab. Lett. 1 (1983), 313-316.

[3] J. Aitchison, Large-sample restricted parametric tests, J. Roy. Statist. Soc. Ser. B 24 (1962), 234-250.

[4] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, Massachusetts, (1975).

[5] A. H. Bowker, A test for symmetry in contingency tables, J. Amer. Statist. Assoc. 43 (1948), 572-574.

[6] H. Caussinus, Some concluding observations, Annales de la Faculté des Sciences de l’Université de Toulouse, Série 6(11) (2002), 587-591.

[7] H. Caussinus, Contribution à l’analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l’Université de Toulouse, Série 4(29) (1965), 77-182.

[8] J. N. Darroch and S. D. Silvey, On testing more than one hypothesis, Ann. Math. Stat. 34 (1963), 555-567.

[9] M. Haber, Maximum likelihood methods for linear and log-linear models in categorical data, Comput. Stat. Data Anal. 3 (1985), 1-10.

[10] J. B. Lang, On the partitioning of goodness-of-fit statistics for multivariate categorical response models, J. Amer. Statist. Assoc. 91 (1996), 1017-1023.

[11] J. B. Lang and A. Agresti, Simultaneously modeling joint and marginal distributions of multivariate categorical responses, J. Amer. Statist. Assoc. 89 (1994), 625-632.

[12] P. McCullagh, A class of parametric models for the analysis of square contingency tables with ordered categories, Biometrika 65 (1978), 413-418.

[13] C. R. Rao, Linear Statistical Inference and Its Applications, 2nd edition, Wiley, New York, (1973).

[14] C. B. Read, Partitioning chi-square in contingency tables: A teaching approach, Comm. Stat. Theory Methods 6 (1977), 553-562.

[15] K. Tahata, H. Yamamoto and S. Tomizawa, Orthogonality of decompositions of symmetry into extended symmetry and marginal equimoment for multi-way tables with ordered categories, Aust. J. Stat. 37 (2008), 185-194.

[16] S. Tomizawa and K. Tahata, The analysis of symmetry and asymmetry: Orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables, Journal de la Société Francaise de Statistique 148 (2007), 3-36.

[17] S. Tomizawa, Orthogonal decomposition of point-symmetry model for two-way contingency tables, J. Statist. Plann. Inference 36 (1993), 91-100.

[18] S. Tomizawa, A decomposition of conditional symmetry model and separability of its test statistic for square contingency tables, Sankhyā, Ser. B 54 (1992), 36-41.

[19] S. Tomizawa, Decompositions for 2-ratios-parameter symmetry model in square contingency tables with ordered categories, Biom. J. 29 (1987), 45-55.

[20] H. Yamamoto, T. Iwashita and S. Tomizawa, Decomposition of symmetry into ordinal quasi-symmetry and marginal equimoment for multi-way tables, Aust. J. Stat. 36 (2007), 291-306.