References

AN EFFICIENT STATISTICAL APPROACH TO HANDWRITTEN DIGIT RECOGNITION


[1] G. Baptista and K. M. Kulkarni, A high accuracy algorithm for recognition of handwritten numerals, Pattern Recognition 21(4) (1988).

[2] Gavin Brown, Jeremy L. Wyatt, Rachel Harris and Xin Yao: Diversity creation methods: a survey and categorization, Information Fusion (INFFUS) 6(1) (2005), 5-20.

[3] A. d\\\'Acierno, C. De Stefano and M. Vento, A structural character recognition method using neural networks, ICDAR-91, First International Conference on Document Analysis and Recognition, 30 Sep.-2 Oct. 1991, Saint Malo, France 2 (1991), 803-811.

[4] P. Dargenton, N. Vincent and H. Emptoz, Appariement de deux graphes structurels quelconques pour la reconnaissance de lettres manuscrites, Actes du 9e Congrès AFCET-RFIA, Paris, (1994), 461-471.

[5] V. Di Lecce, A. Guerriero, G. Dimauro, S. Impedovo, S. Pirlo and A. Salzo, A New Database of Confusing Characters for Testing Character Recognition Algorithms, 10th International Conference on Image Analysis and Processing (ICIAP\\\'99) 939 (1999).

[6] A. C. Downton, R. W. S. Tregidgo, C. G. Leedham and Hendrawan, Recognition of handwritten British postal addresses, From Pixel to Features III: Frontiers in Handwriting Recognition, S. Impedovo and JC Simon (eds), Elsevier Science Publishers BV (1992), 129-143.

[7] Giorgio Fumera and Fabio Roli: A Theoretical and Experimental Analysis of Linear Combiners for Multiple Classifier Systems, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 27(6) (2005), 942-956.

[8] Y. S. Huang, and C. Y. Suen, An Optimal Method of Combining Multiple Classifiers for Unconstrained Handwritten Numeral Recognition From Pixel to Features III: Frontiers in Handwriting Recognition, S. Impedovo and IC Simon (eds), Elsevier Science Publishers BV (1992).

[9] J. J. Hull, A. Commise and T. K. Ho, Multiple Algorithms for Handwritten Character Recognition, Frontiers in Handwriting Recognition, April 2-3, Montreal PQ, Canada (1990).

[10] Ludmila I. Kuncheva, Diversity in multiple classifier systems, Information Fusion (INFFUS) 6(1) (2005), 3-4.

[11] Ludmila I. Kuncheva, Christopher J. Whitaker, and Catherine A. Shipp, Limits on the majority vote accuracy in classifier fusion, Pattern Anal. Appl. 6(1) (2003), 22-31.

[12] D. S. Lee and S. N. Srihari, Handprinted Digit Recognition: A Comparison of Algorithms, From Pixel to Features III: Frontiers in Handwriting Recognition, S. Impedovo and IC Simon (eds), Elsevier Science Publishers BV (1992).

[13] Ofer Matan: On Voting Ensembles of Classifiers, In Proceedings of AAAI-96 workshop on Integrating Multiple Learned Models (1996).

[14] N. J. Naccache and R. Shingal, SPTA: A proposed algorithm for thinning binary patterns, IEEE Trans. on System Man and Cybernetics, SMC-14(3) (1984).

[15] T. Pamg-Ning and J. Rong, Research track posters: Ordering patterns by combining opinions from multiple sources, Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD\\\'04, ACM Press (2004).

[16] From Pixel to Features III: Frontiers in Handwriting Recognition, S. Impedovo and J. C. Simon (eds), Elsevier Science Publishers BV (1992).

[17] Konstantinos Sirlantzis, Sanaul Hoque and Michael C. Fairhurst, Input space transformations for multi-classifier systems Based on n-tuple classifiers with application to handwriting recognition, Multiple Classifier Systems (2003), 356-365.

[18] Kagan Tumer and Joydeep Ghosh, Error Correlation and error reduction in ensemble classifiers, Connect. Sci. 8(3) (1996), 385-404.

[19] P. S. P. Wang and A. Gupta, An Improved Structural Approach for Automated Recognition of Handprinted Characters. Proceedings in Fundamentals in Handwriting Recognition, Chateau de Bonas, France (1993).

[20] P. S. P. Wang, M. V. Nagendraprosad and A. Gupta, A neural net based ‘hibrid’ approach to handwritten numeral recognition, From Pixel to Features III: Frontiers in Handwriting Recognition, S. Impedovo and IC Simon (eds), Elsevier Science Publishers BV (1992).

[21] L. Xu, A. Kryzak, and C. Y. Suen, Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Transactions on Systems Man and Cybernetics 22(3) (1992).

[22] Manuela Zanda, Gavin Brown, Giorgio Fumera and Fabio Roli, Ensemble learning in linearly combined classifiers via negative correlation, MCS (2007), 440-449.