References

POLYNOMIAL APPROXIMATIONS FOR ESTIMATION OF HIDDEN MARKOV MODEL'S PARAMETERS


[1] E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains, The Annals of Mathematical Statistics 37(6) (1966).

[2] J. A. Boguslavskiy, A Bayes estimations of nonlinear regression and adjacent problems, Journal of Computer and Systems Sciences International 4 (1996), 14-24.

[3] J. A. Boguslavskiy, Polynomial Approximations for Nonlinear Problems of Estimation and Control, Fizmat, MAIK, 2006.

[4] J. A. Boguslavskiy, A Bayes estimator of parameters of nonlinear dynamic systems, Mathematical Problems in Engineering, 2009, Article ID 801475, 21 pages, 2009.

[5] M. Borodovsky and S. Ekisheva, Problems and Solutions in Biological Sequence Analysis, University Press, Cambridge, 2006.

[6] O. Cappe, E. Moulines and T. Ryden, Interference in Hidden Markov Models, Springer-Verlag, New York, 2005.

[7] S. E. Levinson, L. R. Rabiner and M. M. Sondhi, An introduction to the application of the theory of probabilistic function of a Markov process to automatic speech recognition, Bell System Technical Journal 62 (1983).

[8] R. Rubin, S. R. Eddy, A. Krogh and G. Mitchison, Biological Sequence Analysis; Probabilistic Models of Proteins and Nucleic Acid, University Press, Cambridge, 1998.

[9] A. N. Schiryaev, The Probability, 2nd ed., Springer-Verlag, New York, 1996.

[10] M. Stouna, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375-481.

[11] P. C. Young, Recursive Estimation and Time-Series Analysis, Springer-Verlag, New York, 1984.