References

EXTENSION OF THE MARGINAL CUMULATIVE LOGISTIC MODEL AND DECOMPOSITIONS OF MARGINAL HOMOGENEITY FOR MULTI-WAY TABLES


[1] A. Agresti, Analysis of Ordinal Categorical Data, Wiley, New York, 1984.

[2] A. Agresti, Categorical Data Analysis, 2nd edition, Wiley, New York, 2002.

[3] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, Massachusetts, 1975.

[4] K. Hashimoto, Gendai Nippon no Kaikyuu Kouzou (Class Structure in Modern Japan: Theory, Method and Quantitative Analysis), Toshindo, Tokyo (in Japanese), 1999.

[5] P. McCullagh, A logistic model for paired comparisons with ordered categorical data, Biometrika 64 (1977), 449-453.

[6] N. Miyamoto, K. Niibe and S. Tomizawa, Decompositions of marginal homogeneity model using cumulative logistic models for square contingency tables with ordered categories, Aust. J. Stat. 34 (2005), 361-373.

[7] K. Tahata, S. Katakura and S. Tomizawa, Decompositions of marginal homogeneity model using cumulative logistic models for multi-way contingency tables, Revstat. 5 (2007), 163-176.

[8] K. Tahata and S. Tomizawa, Generalized marginal homogeneity model and its relation to marginal equimoments for square contingency tables with ordered categories, Adv. Data Anal. Classif. 2 (2008), 295-311.

[9] S. Tomizawa, A decomposition of the marginal homogeneity model for square contingency tables with ordered categories, Calcutta Statist. Assoc. Bull. 43 (1993), 123-125.

[10] S. Tomizawa, A decomposition of the marginal homogeneity model into three models for square contingency tables with ordered categories, Sankhyā Ser. B 60 (1998), 293-300.