[1] A. Agresti, Analysis of Ordinal Categorical Data, Wiley, New York,
1984.
[2] A. Agresti, Categorical Data Analysis, 2nd edition, Wiley, New
York, 2002.
[3] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge,
Massachusetts, 1975.
[4] K. Hashimoto, Gendai Nippon no Kaikyuu Kouzou (Class Structure in
Modern Japan: Theory, Method and Quantitative Analysis), Toshindo,
Tokyo (in Japanese), 1999.
[5] P. McCullagh, A logistic model for paired comparisons with ordered
categorical data, Biometrika 64 (1977), 449-453.
[6] N. Miyamoto, K. Niibe and S. Tomizawa, Decompositions of marginal
homogeneity model using cumulative logistic models for square
contingency tables with ordered categories, Aust. J. Stat. 34 (2005),
361-373.
[7] K. Tahata, S. Katakura and S. Tomizawa, Decompositions of marginal
homogeneity model using cumulative logistic models for multi-way
contingency tables, Revstat. 5 (2007), 163-176.
[8] K. Tahata and S. Tomizawa, Generalized marginal homogeneity model
and its relation to marginal equimoments for square contingency tables
with ordered categories, Adv. Data Anal. Classif. 2 (2008),
295-311.
[9] S. Tomizawa, A decomposition of the marginal homogeneity model for
square contingency tables with ordered categories, Calcutta Statist.
Assoc. Bull. 43 (1993), 123-125.
[10] S. Tomizawa, A decomposition of the marginal homogeneity model
into three models for square contingency tables with ordered
categories, SankhyÄ Ser. B 60 (1998), 293-300.