References

A ROBUST ESTIMATION METHOD FOR A GROWTH CURVE MODEL WITH BALANCED DESIGN


[1] M. G. Ben, E. Martinez and V. J. Yohai, Robust estimation for the multivariate linear model based on a T-scale, J. Multivariate Analysis 97 (2006), 1600-1622.

[2] T. Hastie and R. Tibshirani, Varying-coefficient models, J. Royal Statist. Soc. Series B 55 (1993), 757-796.

[3] P. J. Huber, Robust estimation of a location parameter, Ann. Math. Statist. 35 (1964), 73-101.

[4] P. J. Huber, Robust regression: Asymptotics, conjectures and Monte carlo, Ann. Statistics 1 (1973), 799-821.

[5] R. Maronna, D. R. Martin and V. J. Yohai, Robust Statistics-Theory and Methods, Wiley, (2006).

[6] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51 (1964), 313-326.

[7] P. J. Rousseeuw, S. V. Aelst, K. V. Driessen and J. A. Gulló, Robust multivariate regression, Technometrics 46 (2004), 293-305.

[8] K. Satoh, M. Kobayashi and Y. Fujikoshi, Variable selection for the growth curve model, J. Multivariate Analysis 60 (1997), 277-292.

[9] K. Satoh, H. Yanagihara and M. Ohtaki, Bridging the gap between B-spline and polynomial regression model, Comm. Statist. Comput. Simul. 32 (2003), 179-190.

[10] K. Satoh and H. Yanagihara, Estimation of varying coefficients for a growth curve model, American Journal of Mathematical and Management Sciences, in press, (2010).

[11] E. F. Vonesh and R. L. Carter, Efficients inference for random-coefficient growth curve models with unbalanced data, Biometrics 43 (1987), 617-628.

[12] B. Wilson and M. Hilferty, The distribution of chi-square, Proceedings of the National Academy of Sciences 17 (1931), 684-688.