References

PROPERTIES OF CONVERGENCE OF A FUZZY SET ESTIMATOR OF THE REGRESSION FUNCTION


[1] A. Antoniadis, J. Bigot and I. Gijbels, Penalized wavelet monotone regression, Statist. Prob. Lett. 77(16) (2007), 1608-1621.

[2] G. Beliakov and M. Kohler, Estimation of regression functions by Lipschitz continuous functions, Submitted for publication, 2005.

[3] A. Beresteanu, Nonparametric estimation of regression functions under restrictions on partial derivatives, Rand. Journal of Economics, 2005.

[4] R. Blundell and A. Duncan, Kernel regression in empirical microeconomics, Journal of Human Resources, Winter 33(1) (1998), 62-87.

[5] D. Bosq and J. P. Lecoutre, Théorie de l´estimation fonctionnelle, Economica, Paris, 1987.

[6] O. Bousquet, S. Boucheron and G. Lugosi, Theory of classification: A survey of some recent advancement, ESAIM: Probability and Statistics 9 (2005), 323-375.

[7] K. L. Chung, A Course in Probability Theory, Third edition, Academic Press, New York, 2001.

[8] G. Collomb, Estimation non-paraétrique de la régression: Revue bibliographique, Inter. Statist. Rev. 49 (1981), 75-93.

[9] G. Collomb, Propiétés de convergence presque compléte du prédicteur à noyan, Zeitung Wahrscheinlichkeitstheorie und verwandte Gebiete 66 (1984), 441-460.

[10] G. Collomb, Nonparametric regression: An up to date bibliography, Statistics 2 (1985), 297-307.

[11] S. Döhler and L. Rüschendorf, Nonparametric estimation of regression functions in point process models, Statistical Inference for Stochastic Processes 6(3) (2003), 291-307.

[12] J. Fajardo, R. Ríos and L. Rodríguez, Properties of convergence of a fuzzy set estimator of the density function, Submitted for publication, 2010.

[13] M. Falk and F. Liese, Lan of thinned empirical processes with an application to fuzzy set density estimation, Extremes 1(3) (1998), 323-349, Seminare Maurey-Schwartz (1975-1976).

[14] F. Ferraty, A. Mas and P. Vieu, Nonparametric regression on functional data: Inference and practical aspects, Aust. N. Z. J. Statist. 10.1111/j.1467-842X. 2006.00467.x, 2007.

[15] F. Ferraty, V. Núnez-Antón and P. Vieu, Regresión No Paramétrica: Desde la Dimensión uno Hasta la Dimensión Infinita, Servicio Editorial de la Universidad del Pais Vasco, Bilbao, 2001.

[16] P. Hall, Q. Li and J. Racine, Nonparametric estimation of regression functions in the presence of irrelevant regressors, Review of Economics and Statistics 89 (2007), 784-789.

[17] W. Härdle, Applied Nonparametric Regression, Cambridge Univ. Press, Cambridge, 1990.

[18] W. Härdle, Smoothing Techniques with Implementation in S, Springer Verlag, New York, 1991.

[19] C. Ludeña and R. Ríos, Teoría de Aprendizaje Estadístico y Selección de Modelos, Decimosexta Escuela Venezolana de Matemáticas, Mérida-Venezuela, 2003.

[20] P. Massart, Some applications of concentration inequalities to statistics, probability theory, Annales de la Faculté des Sciences de Toulouse (2) (2000), 245-303.

[21] J. Racine and Q. Li, Nonparametric estimation of regression functions with both categorical and continuous data, Journal of Econometrics 119 (2004), 99-130.

[22] M. Schimek, Smoothing and Regression: Approaches, Computation, and Application, M. G. Schimek (ed.), Wiley Series in Probability and Statistics, Wiley, New York, 2000.

[23] C. Stone, Optimal rates of convergence for nonparametric regression, Ann. Statist. (9) (1981), 1348-1360.

[24] A. W. Van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics, Springer Series in Statistic, Springer-Verlag, New York, Inc., 1996.

[25] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman Hall, London, 1995.

[26] A. Watson, Estudio Comparativo de Diversos Métodos de Estimación de Densidades por Kernels, Master’s thesis, Universidad Simón Bolívar, Caracas-Venezuela, 2007.