References

REDUCED GRADIENT METHOD FOR MINIMAX ESTIMATION OF A BOUNDED POISSON MEAN


[1] A. El Mouatasim, Reduced gradient method and its generalization via stochastic perturbation, Journal of Natural Science and Mathematics 2(1) (2008), 17-40.

[2] A. El Mouatasim, R. Ellaia and J. E. Souza de Cursi, Random perturbation of variable metric method for unconstraint nonsmooth nonconvex optimization, J. Appl. Math. Comp. Sci. 16(4) (2006), 463-474.

[3] M. N. Ghosh, Uniform approximation of minimax point estimates, Ann. Math. Statist. 35 (1964), 1031-1047.

[4] M. B. Gonalves and J. E. Souza de Cursi, Parameter estimation in a trip distribution model by random perturbation of a descent method, Transport Research Part B 35 (2001), 137-161.

[5] E. Gourdin, Global Optimization Algorithms for the Construction of Least Favorable Priors and Minimax Estimators, Engineering Undergraduate Thesis, Institut d’Informatique d’Interprise, Every, France, 1989.

[6] E. Gourdin, B. Jaumard and K. B. MacGibbon, Global optimization decomposition methods for bounded parameter minimax evaluation, SIAM J. Sci. Comput. 15(1) (1994), 16-35.

[7] H. Hara and A. Takemura, Bayes admissible estimation of the means in Poisson decomposable, Journal of Statistical Planning and Inference 139 (2009), 1297-1319.

[8] I. M. Johnstone and K. B. MacGibbon, Minimax estimation of a constrained Poisson vector, Ann. Stat. 20(2) (1992), 807-831.

[9] I. M. Johnstone and K. B. MacGibbon, Asymptotically minimax estimation of a constrained Poisson vector via polydisc transforms, Annales de l’I.H.P., Section B, Tome 29(2) (1993), 289-319.

[10] É. Marchand and A. Parsian, Minimax estimation of a bounded parameter of a discrete distribution, Stat. Prob. Lett. 76 (2006), 547-554.

[11] A. M. Mood, F. A. Graybill and D. C. Boes, Introduction to the Theory of Statistics, Third Edition, McGraw-Hill, Statistical Series, 1974.

[12] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, Tata McGraw-Hill Edition, 2002.

[13] P. Sadegh and J. C. Spall, Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Trans. Autom. Control 44(1) (1999), 231-232.