[1] A. El Mouatasim, Reduced gradient method and its generalization
via stochastic perturbation, Journal of Natural Science and
Mathematics 2(1) (2008), 17-40.
[2] A. El Mouatasim, R. Ellaia and J. E. Souza de Cursi, Random
perturbation of variable metric method for unconstraint nonsmooth
nonconvex optimization, J. Appl. Math. Comp. Sci. 16(4) (2006),
463-474.
[3] M. N. Ghosh, Uniform approximation of minimax point estimates,
Ann. Math. Statist. 35 (1964), 1031-1047.
[4] M. B. Gonalves and J. E. Souza de Cursi, Parameter estimation in a
trip distribution model by random perturbation of a descent method,
Transport Research Part B 35 (2001), 137-161.
[5] E. Gourdin, Global Optimization Algorithms for the Construction of
Least Favorable Priors and Minimax Estimators, Engineering
Undergraduate Thesis, Institut d’Informatique
d’Interprise, Every, France, 1989.
[6] E. Gourdin, B. Jaumard and K. B. MacGibbon, Global optimization
decomposition methods for bounded parameter minimax evaluation, SIAM
J. Sci. Comput. 15(1) (1994), 16-35.
[7] H. Hara and A. Takemura, Bayes admissible estimation of the means
in Poisson decomposable, Journal of Statistical Planning and Inference
139 (2009), 1297-1319.
[8] I. M. Johnstone and K. B. MacGibbon, Minimax estimation of a
constrained Poisson vector, Ann. Stat. 20(2) (1992), 807-831.
[9] I. M. Johnstone and K. B. MacGibbon, Asymptotically minimax
estimation of a constrained Poisson vector via polydisc transforms,
Annales de l’I.H.P., Section B, Tome 29(2) (1993), 289-319.
[10] É. Marchand and A. Parsian, Minimax estimation of a bounded
parameter of a discrete distribution, Stat. Prob. Lett. 76 (2006),
547-554.
[11] A. M. Mood, F. A. Graybill and D. C. Boes, Introduction to the
Theory of Statistics, Third Edition, McGraw-Hill, Statistical Series,
1974.
[12] A. Papoulis and S. U. Pillai, Probability, Random Variables and
Stochastic Processes, Tata McGraw-Hill Edition, 2002.
[13] P. Sadegh and J. C. Spall, Optimal random perturbations for
stochastic approximation using a simultaneous perturbation gradient
approximation, IEEE Trans. Autom. Control 44(1) (1999), 231-232.