References

IMPROVEMENT IN MODELLING AND PREDICTING SOME PREDATOR-PREY POPULATIONS


[1] M. S. Boyce, Modelling predator-prey dynamics, in Research Techniques in Animal Ecology: Controversies and Consequences, eds. L. Boitani and T. K. Fuller; 253-287, Columbia University Press, New York, (2000).

[2] D. R. Brillinger, Some aspects of modern population mathematics, Canad. J. Statist. 9 (1981), 173-194.

[3] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd edition, Springer-Verlag, New York, (1991).

[4] M. G. Bulmer, A statistical analysis of the 10-year cycle in Canada, J. Animal Ecol. 43 (1974), 701-718.

[5] Z. Chen and R. Kulperger, A stochastic competing-species model and ergodicity, J. Appl. Probab. 42(3) (2005), 738-753.

[6] S. Froda and G. Colavita, Estimating predator-prey systems via ordinary differential equations with closed orbits, Aust. N.Z. J. Stat. 2 (2005), 235-254.

[7] S. Froda and S. Nkurunziza, Prediction of predator-prey populations modelled by perturbed ODE, J. Math. Biol. 54 (2007), 407-451.

[8] C. T. Gard and D. Kannan, On a stochastic differential equation modelling of prey-predator evolution, J. Appl. Prob. 13 (1976), 429-443.

[9] C. T. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker, (1988).

[10] L. R. Ginzburg and D. E. Taneyhill, Populations cycles of forest Lepidoptera : A maternal effect hypothesis, J. Animal Ecol. 63 (1994), 79-92.

[11] B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P. ellner, E. McCauley, R. Nisbet and S. N. Wood, Why do populations cycle? A synthesis of statistical and mechanistic modelling approaches, Ecology 80(6) (1999), 1789-1805.

[12] A. Y. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, Springer-Verlag, New York, (2004).

[13] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, (1925).

[14] L. Luckinbill, Coexistence in laboratory populations of paramecium aurelia and its predator didinium nasutum, Ecology 56 (1973), 1320-1327.

[15] S. Nkurunziza, Inférence statistique dans certains systèmes écologiques: Système proie-prédateur, Ph.D Thesis, UQAM. Montreal, (2005).

[16] E. Renshaw, Modelling Biological Populations in Space and Time, Cambridge University Press, (1991).

[17] E. Royama, Analytical Population Dynamics, Chapman & Hall, London, (1992).

[18] J. M. Spanjaard and L. White, Adaptive period estimation of a class of periodic random processes, IEEE 5 (1995), 1792-1795.

[19] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Gauthiers-Villars, (1931).

[20] P. Whittle, Some recent contributions to the theory of stationary processes, A study in the Analysis of Stationary Time Series, (By H. Wold), Almqvist & Wiksell, Stockholm, (1954).