[1] M. S. Boyce, Modelling predator-prey dynamics, in Research
Techniques in Animal Ecology: Controversies and Consequences, eds. L.
Boitani and T. K. Fuller; 253-287, Columbia University Press, New
York, (2000).
[2] D. R. Brillinger, Some aspects of modern population mathematics,
Canad. J. Statist. 9 (1981), 173-194.
[3] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods,
2nd edition, Springer-Verlag, New York, (1991).
[4] M. G. Bulmer, A statistical analysis of the 10-year cycle in
Canada, J. Animal Ecol. 43 (1974), 701-718.
[5] Z. Chen and R. Kulperger, A stochastic competing-species model and
ergodicity, J. Appl. Probab. 42(3) (2005), 738-753.
[6] S. Froda and G. Colavita, Estimating predator-prey systems via
ordinary differential equations with closed orbits, Aust. N.Z. J.
Stat. 2 (2005), 235-254.
[7] S. Froda and S. Nkurunziza, Prediction of predator-prey
populations modelled by perturbed ODE, J. Math. Biol. 54 (2007),
407-451.
[8] C. T. Gard and D. Kannan, On a stochastic differential equation
modelling of prey-predator evolution, J. Appl. Prob. 13 (1976),
429-443.
[9] C. T. Gard, Introduction to Stochastic Differential Equations,
Marcel Dekker, (1988).
[10] L. R. Ginzburg and D. E. Taneyhill, Populations cycles of forest
Lepidoptera : A maternal effect hypothesis, J. Animal Ecol. 63 (1994),
79-92.
[11] B. E. Kendall, C. J. Briggs, W. W. Murdoch, P. Turchin, S. P.
ellner, E. McCauley, R. Nisbet and S. N. Wood, Why do populations
cycle? A synthesis of statistical and mechanistic modelling
approaches, Ecology 80(6) (1999), 1789-1805.
[12] A. Y. Kutoyants, Statistical Inference for Ergodic Diffusion
Processes, Springer-Verlag, New York, (2004).
[13] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins,
Baltimore, (1925).
[14] L. Luckinbill, Coexistence in laboratory populations of
paramecium aurelia and its predator didinium nasutum, Ecology 56
(1973), 1320-1327.
[15] S. Nkurunziza, Inférence statistique dans certains systèmes
écologiques: Système proie-prédateur, Ph.D Thesis, UQAM.
Montreal, (2005).
[16] E. Renshaw, Modelling Biological Populations in Space and Time,
Cambridge University Press, (1991).
[17] E. Royama, Analytical Population Dynamics, Chapman & Hall,
London, (1992).
[18] J. M. Spanjaard and L. White, Adaptive period estimation of a
class of periodic random processes, IEEE 5 (1995), 1792-1795.
[19] V. Volterra, Leçons sur la théorie mathématique de la
lutte pour la vie, Gauthiers-Villars, (1931).
[20] P. Whittle, Some recent contributions to the theory of stationary
processes, A study in the Analysis of Stationary Time Series, (By H.
Wold), Almqvist & Wiksell, Stockholm, (1954).