[1] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with
respect to Gaussian processes, Ann. Probab. 29 (2001), 766-801.
[2] X. Bardina and C. A. Tudor, The law of a stochastic integral with
two independent fractional Brownian motions, Bol. Soc. Mat. Mex. III.
Ser. 13(1) (2007), 231-242.
[3] R. Berthuet, Loi du logharitme itéré pour cetaines
intégrales stochastiques, Ann. Sci. Univ. Clérmont-Ferrand
Math. 69 (1981), 9-18.
[4] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic
Calculus for fBm and Applications, Springer-Verlag, (2008).
[5] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional
Brownian motion and its relation to occupation times, Statist. Probab.
Lett. 69 (2004), 405-419.
[6] T. Bojdecki, L. Gorostiza and A. Talarczyk, Some extension of
fractional Brownian motion and sub-fractional Brownian motion related
to particle systems, Elect. Comm. Probab. 12 (2007), 161-172.
[7] P. Caithamer, Decoupled double stochastic fractional integrals,
Stochastics and Stochastics Reports 77 (2005), 205-210.
[8] Y. Hu, Integral transformations and anticipative calculus for
fBms, Memoirs Amer. Math. Soc. 175 (2005), 825.
[9] O. Julià and D. Nualart, The distribution of a double
stochastic integral with respect to two independent Brownian sheets,
Stochastics 25 (1998), 171-182.
[10] P. Lévy, Wiener’s random functions, and other Laplacian
random functions, Proc. 2nd Berkeley Symp. Math. Stat. Probab.,
University of California Press, Berkeley, Ca. 2 (1951).
[11] Y. Mishura, Stochastic calculus for fBms and related processes,
Lect. Notes in Math. 1929 (2008).
[12] D. Nualart, On the distribution of a double stochastic integral,
Z. Wahrsch. Verw. Gebiete 65 (1983), 49-60.
[13] D. Nualart, Malliavin Calculus and Related Topics, 2nd edition,
Springer, New York, (2006).
[14] E. Philip Protter, Stochastic Integration and Differential
Equations, 2nd edition, Springer-Verlag, New York, 2005.
[15] C. Tudor, Some properties of the sub-fractional Brownian motion,
Stochastics 79 (2007), 431-448.
[16] C. Tudor, Inner product spaces of integrands associated to
sub-fractional Brownian motion, Statist. Probab. Lett. 78 (2008),
2201-2209.
[17] C. Tudor, Multiple sub-fractional integrals and some
approximations, Appl. Anal. 87 (2008), 311-323.
[18] C. Tudor, Some aspects of stochastic calculus for the
sub-fractional Brownian motion, An. Univ. Bucur. Mat. 57(2) (2008),
199-230.
[19] C. Tudor, On the Wiener integral with respect to a sub-fractional
Brownian motion, J. Math. Anal. Appl. 351 (2009), 456-468.
[20] L. Yan and C. Chen, Intersection local time and calculus for
Lévy area process, submitted (2009).
[21] L. Yan and G. Shen, Itô and Tanaka formula for sub-fractional
Brownian motion, submitted (2009).
[22] M. Yor, Remarques sur une formule de Paul Lévy, Lect. Notes in
Math. 784 (1978), 343-346.