[1] T. Akio, Martingale limit theorem and its application to an
ergodic controlled Markov Chain, Systems & Control Letters 26 (1995),
261-266.
[2] A. Antoniads, G. Gregoire and I. W. Mckeague, Wavelet methods for
curve estimation, J. Amer. Statist. Assoc. 89 (1994), 1340-1353.
[3] A. Bianco and G. Boente, Robust estimators in semiparametric
partly linear regression models, J. Statist. Planning and Inference
122 (2004), 229-252.
[4] G. Chai and K. Xu, Wavelet smoothing in semiparametric
regression model, Chinese J. Appl. Prob. Statist. 15 (1999),
97-105.
[5] H. Chen, Convergence rates for parametric components in a partly
linear model, Annals of Statist. 16 (1988), 136-146.
[6] J. T. Gao and V. V. Anh, Semiparametric regression model under
long-range dependent errors, J. Statist. Planning and Inference 80
(1999), 37-57.
[7] S. Hu, Central limit theorem for weighted sum of martingale
difference, Acta Mathematicae Applicatae Sinica 24 (2001), 539-545.
[8] H. C. Hu and D. H. Hu, Strong consistency of wavelet estimation
in semiparametric regression models, Acta Math Sinica (Chinese Series)
49(6) (2006), 1417-1424.
[9] S. Kundu, S. Majumder and K. Mukherjee, Central limit theorems
revisited, Statist. Prob. Lett. 47 (2000), 265-275.
[10] W. Qian and G. Cai, Strong approximability of wavelet estimate in
semiparametric regression model, Science in China (series A) 29
(1999), 233-240.
[11] W. Qian, G. Cai and F. Jiang, Error variance of wavelet estimate
in semiparametric regression, Chinese Journal of Annual of Maths 21
(2000), 341-350.
[12] P. Shi and X. Teng, Asymptotic distributions of M-estimators of
the parametric components of partly linear models with fixed carriers,
Advances in Mathematics 28 (1999), 447-461.
[13] J. Shi, Discrete Martingale and its Application, Science Press,
Beijing, 1996.
[14] P. Speckman, Kernel smoothing in partial linear models, J. R.
Statist. Soc. 50 (1988), 413-436.
[15] W. F. Stout, Almost Sure Convergence, Academic Press, New York,
1974.
[16] Z. Yan, W. Wu and Z. Nie, Near neighbour estimate in
semiparametric regression model: The martingale difference error
sequence case, Chinese J. Appl. Prob. Statist. 17 (2001), 44-50.
[17] S. Yang, Nonparametric regression weighted function estimator for
martingale sequence, J. Sys. Sci. Math. Scis. 19 (1999), 79-85.