References

IDENTIFIABILITY PROBLEMS RELATED WITH CREDIBILITY: A SURVEY WITH APPLICATIONS


[1] M. Ahmad, A short note on Conway-Maxwell-hyper Poisson distribution, Pakistan Journal of Statistics 23(2) (2007), 135-137.

[2] G. E. Bardwell and E. L. Crow, Two-parameter family of hyper-Poisson distributions, J. Amer. Statist. Assoc. 59(305) (1964), 133-141.

[3] S. K. Bhattacharya, Confluent hypergeometric distributions of discrete and continuous type with applications to accident proneness, Calcutta Statist. Ass. Bull. 15 (1966), 20-31.

[4] H. Bühlmann and A. Gisler, A Course in Credibility Theory and its Applications, Springer-Verlag, Berlin, (2005).

[5] T. Cacoullos and H. Papageorgiou, Characterizing the negative binomial distribution, Journal Applied Probability 19(3) (1982), 742-743.

[6] E. Calderín, E. Gómez-Déniz and I. Cabrera, Bayesian local robustness under weighted squared-error loss function incorporating unimodality, Statistics & Probability Letters 77 (2007), 69-74.

[7] E. Furman and R. Zitikis, Weighted premium calculation principles, Insurance: Mathematics and Economics 42 (2008), 459-465.

[8] H. U. Gerber and A. Arbor, Credibility for Esscher premiums, Mitteilungen der Vereinigung schweiz, Versicher ungsmathematiker, Heft 3 (1980), 307-312.

[9] E. Gómez-Déniz and F. Vázquez, Robustness in Bayesian Model for Bonus-Malus Systems, Intelligent and Other Computation Techniques in Insurance, Theory and Applications, World Scientific (2003).

[10] E. Gómez-Déniz, A generalization of the credibility theory obtained by using the weighted balanced loss function, Insurance: Mathematics and Economics 42 (2008), 850-854.

[11] E. Gómez-Déniz, Some Bayesian credibility premiums obtained by using posterior regret Г-minimax methodology, Bayesian Analysis 4(1) (2009), 1-20.

[12] A. K. Gupta and J. Wesolowski, Uniform mixtures via posterior means, Ann. Inst. Statist. Math. 49(1) (1997), 171-180.

[13] A. K. Gupta and J. Wesolowski, Discrete uniform mixtures via posterior means, Test 8(2) (1999), 399-409.

[14] W. Heilmann, Decision theoretic foundations of credibility theory, Insurance: Mathematics and Economics 6 (1989), 145-149.

[15] T. N. Herzog, Introduction to Credibility Theory (2nd edition), ACTEX Publications, Winsted, (1996).

[16] W. Jewell, Credible means are exact Bayesian for exponential families, Astin Bulletin 8(1) (1974), 77-90.

[17] N. L. Johnson, Uniqueness of a result in the theory of accident proneness, Biometrika 44(3/4) (1957), 530-531.

[18] P. M. Kahn, Credibility, Theory and Applications, Academic Press, New York, (1975).

[19] U. Kamps, On a class of premium principles including the Esscher premium, Scandinavian Actuarial Journal 1 (1998), 75-80.

[20] Z. Landsman and U. E. Makov, Exponential dispersion models and credibility, Scandinavian Actuarial Journal 1 (1998), 89-96.

[21] S. Meng, Y. Wei and G. A. Whitmore, Accounting for individual over-dispersion in a bonus-malus system, Astin Bulletin 29(2) (1999), 327-337.

[22] H. Papageorgiou, Characterizations of continuous binomial and negative binomial mixtures, Biometrical Journal 26(7) (1984), 795-798.

[23] H. Papageorgiou and J. Wesolowski, Posterior mean identifies the prior distribution in NB and related models, Statistics & Probability Letters 36 (1997), 127-134.

[24] T. Sapatinas, Identifiability of mixtures of power-series distributions and related characterizations, Ann. Inst. Statist. Math. 47(3) (1995), 447-459.

[25] J. Wesolowski, Bivariate discrete measures via a power series conditional distribution and a regression function, Journal of Multivariate Analysis 55 (1995), 219-229.