[1] M. Ahmad, A short note on Conway-Maxwell-hyper Poisson
distribution, Pakistan Journal of Statistics 23(2) (2007), 135-137.
[2] G. E. Bardwell and E. L. Crow, Two-parameter family of
hyper-Poisson distributions, J. Amer. Statist. Assoc. 59(305) (1964),
133-141.
[3] S. K. Bhattacharya, Confluent hypergeometric distributions of
discrete and continuous type with applications to accident proneness,
Calcutta Statist. Ass. Bull. 15 (1966), 20-31.
[4] H. Bühlmann and A. Gisler, A Course in Credibility Theory and
its Applications, Springer-Verlag, Berlin, (2005).
[5] T. Cacoullos and H. Papageorgiou, Characterizing the negative
binomial distribution, Journal Applied Probability 19(3) (1982),
742-743.
[6] E. CalderÃn, E. Gómez-Déniz and I. Cabrera, Bayesian
local robustness under weighted squared-error loss function
incorporating unimodality, Statistics & Probability Letters 77 (2007),
69-74.
[7] E. Furman and R. Zitikis, Weighted premium calculation principles,
Insurance: Mathematics and Economics 42 (2008), 459-465.
[8] H. U. Gerber and A. Arbor, Credibility for Esscher premiums,
Mitteilungen der Vereinigung schweiz, Versicher ungsmathematiker, Heft
3 (1980), 307-312.
[9] E. Gómez-Déniz and F. Vázquez, Robustness in Bayesian
Model for Bonus-Malus Systems, Intelligent and Other Computation
Techniques in Insurance, Theory and Applications, World Scientific
(2003).
[10] E. Gómez-Déniz, A generalization of the credibility theory
obtained by using the weighted balanced loss function, Insurance:
Mathematics and Economics 42 (2008), 850-854.
[11] E. Gómez-Déniz, Some Bayesian credibility premiums obtained
by using posterior regret Г-minimax methodology, Bayesian Analysis
4(1) (2009), 1-20.
[12] A. K. Gupta and J. Wesolowski, Uniform mixtures via posterior
means, Ann. Inst. Statist. Math. 49(1) (1997), 171-180.
[13] A. K. Gupta and J. Wesolowski, Discrete uniform mixtures via
posterior means, Test 8(2) (1999), 399-409.
[14] W. Heilmann, Decision theoretic foundations of credibility
theory, Insurance: Mathematics and Economics 6 (1989), 145-149.
[15] T. N. Herzog, Introduction to Credibility Theory (2nd edition),
ACTEX Publications, Winsted, (1996).
[16] W. Jewell, Credible means are exact Bayesian for exponential
families, Astin Bulletin 8(1) (1974), 77-90.
[17] N. L. Johnson, Uniqueness of a result in the theory of accident
proneness, Biometrika 44(3/4) (1957), 530-531.
[18] P. M. Kahn, Credibility, Theory and Applications, Academic Press,
New York, (1975).
[19] U. Kamps, On a class of premium principles including the Esscher
premium, Scandinavian Actuarial Journal 1 (1998), 75-80.
[20] Z. Landsman and U. E. Makov, Exponential dispersion models and
credibility, Scandinavian Actuarial Journal 1 (1998), 89-96.
[21] S. Meng, Y. Wei and G. A. Whitmore, Accounting for individual
over-dispersion in a bonus-malus system, Astin Bulletin 29(2) (1999),
327-337.
[22] H. Papageorgiou, Characterizations of continuous binomial and
negative binomial mixtures, Biometrical Journal 26(7) (1984),
795-798.
[23] H. Papageorgiou and J. Wesolowski, Posterior mean identifies the
prior distribution in NB and related models, Statistics & Probability
Letters 36 (1997), 127-134.
[24] T. Sapatinas, Identifiability of mixtures of power-series
distributions and related characterizations, Ann. Inst. Statist. Math.
47(3) (1995), 447-459.
[25] J. Wesolowski, Bivariate discrete measures via a power series
conditional distribution and a regression function, Journal of
Multivariate Analysis 55 (1995), 219-229.