References

ESTIMATION OF SPARSE MULTINOMIAL CELL PROBABILITIES: A REVIEW


[1] M. Aerts, I. Augustyns and P. Janssen, Smoothing sparse multinomial data using local polynomial fitting, Journal of Nonparametric Statistics 8(2) (1997), 127-147.
DOI: https://doi.org/10.1080/10485259708832717

[2] A. Agresti, Categorical Data Analysis, John Wiley & Sons, 2018.

[3] S. E. Ahmed, Construction of improved estimators of multinomial proportions, Communications in Statistics - Theory and Methods 29(5-6) (2000), 1273-1291.
DOI: https://doi.org/10.1080/03610920008832544

[4] J. H. Albert, Bayesian Methods for Contingency Tables, Encylopedia of Biostatistics, 2004.
DOI: https://doi.org/10.1002/9781118445112.stat04849

[5] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[6] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, Cambridge, Mass: MIT Press, 1975.

[7] D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational inference: A review for statisticians, Journal of the American Statistical Association 112(518) (2017), 859-877.
DOI: https://doi.org/10.1080/01621459.2017.1285773

[8] P. Burman, Smoothing sparse contingency tables, Sankhya: The Indian Journal of Statistics, Series A 49(1) (1987), 24-36.

[9] A. C. Cameron and P. K. Trivedi, Regression Analysis of Count Data, Cambridge University Press, 2013.

[10] J. Carifio and R. J. Perla, Ten common misunderstandings, misconceptions, persistent myths and urban legends about likert scales and likert response formats and their antidotes, Journal of Social Sciences 3(3) (2007), 106-116.
DOI: https://doi.org/10.3844/jssp.2007.106.116

[11] R. J. Carroll, D. Ruppert and L. A. Stefanski, Measurement Error and Misclassification in Statistics and Epidemiology: Impacts and Bayesian Adjustments, CRC Press, 2006.

[12] J. Dong and J. Simonoff, The construction and properties of boundary kernels for smoothing sparse multinomials, Journal of Computational and Graphical Statistics 3(1) (1994), 57-66.
DOI: https://doi.org/10.2307/1390795

[13] C. X. Feng, A comparison of zero-inflated and hurdle models for modeling zero-inflated count data, Journal of Statistical Distributions and Applications 8(1) (2021); Article 8.
DOI: https://doi.org/10.1186/s40488-021-00121-4

[14] S. E. Fienberg and P. W. Holland, Simultaneous estimation of multinomial cell probabilities, Journal of the American Statistical Association 68(343) (1973), 683-691.
DOI: https://doi.org/10.2307/2284799

[15] P. Hall and D. M. Titterington, On smoothing sparse multinomial data, Australian Journal of Statistics 29(1) (1987), 19-37.
DOI: https://doi.org/10.1111/j.1467-842X.1987.tb00717.x

[16] J. M. Hilbe, Modeling Count Data, Cambridge University Press, 2014a.
DOI: https://doi.org/10.1017/CBO9781139236065

[17] J. M. Hilbe, Negative Binomial Regression, Cambridge University Press, 2014b.

[18] D. W. Hosmer Jr, S. Lemeshow and R. X. Sturdivant, Applied Logistic Regression, John Wiley & Sons, 2013.
DOI: https://doi.org/10.1002/9781118548387

[19] S. Huang, N. Cai, P. P. Pacheco, S. Narrandes, Y. Wang and W. Xu, Applications of support vector machine (svm) learning in cancer genomics, Cancer Genomics & Proteomics 15(1) (2018), 41-51.
DOI: https://doi.org/10.21873/cgp.20063

[20] N. L. Johnson and S. Kotz, Continuous Univariate Distributions, John Wiley & Sons, 1970.

[21] C. Kleiber and A. Zeileis, Applied Econometrics with R, Springer Science & Business Media, 2008.
DOI: https://doi.org/10.1007/978-0-387-77318-6

[22] D. Lambert, Zero-inflated poisson regression, with an application to defects in manufacturing, Technometrics 34(1) (1992), 1-14.
DOI: https://doi.org/10.2307/1269547

[23] R. Likert, A technique for the measurement of attitudes, Archives of Psychology 140(22) (1932), 1-55.

[24] R. J. Little and D. B. Rubin, Statistical analysis with missing data, John Wiley & Sons, 2019.
DOI: https://doi.org/10.1002/9781119482260

[25] J. S. Long, Regression Models for Categorical and Limited Dependent Variables, Sage Publications, 1997.

[26] Y. Min and A. Agresti, Random effect models for repeated measures of zero-inflated count data, Statistical Modelling 5(1) (2005), 1-19.
DOI: https://doi.org/10.1191/1471082X05st084oa

[27] G. Molenberghs and G. Verbeke, Models for Discrete Longitudinal Data, Springer, 2007.

[28] S. M. Ross, A First Course in Probability, Pearson Education, 2010.

[29] D. B. Rubin, Multiple imputation for nonresponse in surveys, John Wiley & Sons, 1987.
DOI: https://doi.org/10.1002/9780470316696

[30] J. Sethuraman, A constructive definition of Dirichlet priors, Statistica Sinica 4(2) (1994), 639-650.

[31] J. S. Simonoff, A penalty function approach to smoothing large sparse contingency tables, The Annals of Statistics 11(1) (1983), 208-218.
DOI: https://doi.org/10.1214/aos/1176346071

[32] Y. Teh, M. Jordan, M. Beal and D. Blei, Hierarchical Dirichlet processes, Journal of the American Statistical Association 101(476) (2006), 1566-1581.
DOI: https://doi.org/10.1198/016214506000000302

[33] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological) 58(1) (1996), 267-288.
DOI: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

[34] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability & Statistics for Engineers & Scientists, Pearson Education, 2011.

[35] L. Wickramasinghe, A. Leblanc and S. Muthukumarana, Model-based estimation of baseball batting metrics, Journal of Applied Statistics 48(10) (2020), 1775-1797.
DOI: https://doi.org/10.1080/02664763.2020.1775792

[36] L. Wickramasinghe, A. Leblanc and S. Muthukumarana, Bayesian inference on sparse multinomial data using smoothed Dirichlet distribution with an application to covid-19 data, Model Assisted Statistics and Applications 18(3) (2023), 207-226.
DOI: https://doi.org/10.3233/MAS-221411

[37] L. Wickramasinghe, A. Leblanc and S. Muthukumarana, Semi-parametric Bayesian estimation of sparse multinomial probabilities with an application to the modelling of bowling performance in T20I cricket, Annals of Biostatistics and Biometric Applications 5(1) (2023), 1-13.

[38] L. Wickramasinghe, A. Leblanc and S. Muthukumarana, Smoothed Dirichlet distribution, Journal of Statistical Theory and Applications 22(4) (2023), 237-261.
DOI: https://doi.org/10.1007/s44199-023-00062-8

[39] Q. Xie, C. Han, V. Jin and S. Lin, HiCimpute: A Bayesian hierarchical model for identifying structural zeros and enhancing single cell Hi-C data, PLOS Computational Biology 18(6) (2022), 1-19.
DOI: https://doi.org/10.1371/journal.pcbi.1010129