References

RANDOM WALKS FACING BINOMIAL CATASTROPHES: FROM FIXED TO RANDOM SURVIVAL PROBABILITY


[1] I. Ben-Ari, A. Roitershtein and R. B. Schinazi, A random walk with catastrophes, Electronic Journal of Probability 24(28) (2019), 1-21.
DOI: https://doi.org/10.1214/19-EJP282

[2] P. J. Brockwell, J. Gani and S. I. Resnick, Birth, immigration and catastrophe processes, Advances in Applied Probability 14(4) (1982), 709-731.
DOI: https://doi.org/10.2307/1427020

[3] L. Comtet, Analyse Combinatoire, Tome 1, Presses Universitaires de France, Paris, 1970.

[4] A. Economou, The compound Poisson immigration process subject to binomial catastrophes, Journal of Applied Probability 41(2) (2004), 508-523.
DOI: https://doi.org/10.1239/jap/1082999082

[5] R. A. Fisher, A theoretical distribution for the apparent abundance of different species, Journal of Animal Ecology 12 (1943), 54-58.

[6] L. R. Fontes and R. B. Schinazi, Metastability of a random walk with catastrophes, Electronic Communications in Probability 24 (2019), 1-8.
DOI: https://doi.org/10.1214/19-ECP275

[7] B. Goncalves and T. Huillet, Scaling features of two special Markov chains involving total disasters, Journal of Statistical Physics 178(2) (2020), 499-531.
DOI: https://doi.org/10.1007/s10955-019-02439-5

[8] B. Goncalves and T. Huillet, A generating function approach to Markov chains undergoing binomial catastrophes, Journal of Statistical Mechanics: Theory and Experiment (2021); Article 033402.
DOI: https://doi.org/10.1088/1742-5468/abdfcb

[9] M. Greenwood, On the statistical measure of infectiousness, Epidemiology & Infection 31(3) (1931), 336-351.
DOI: https://doi.org/10.1017/S002217240001086X

[10] T. E. Harris, The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Bd. 119 Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.

[11] M. Kac, Random walk and the theory of Brownian motion, American Mathematical Monthly 54(7P1) (1947), 369-391.
DOI: https://doi.org/10.1080/00029890.1947.11990189

[12] M. F. Neuts, An interesting random walk on the non-negative integers, Journal of Applied Probability 31(1) (1994), 48-58.
DOI: https://doi.org/10.2307/3215234

[13] J. R. Norris, Markov Chains, Cambridge University Press, 1998.

[14] K. Schreiber, Discrete Self-Decomposable Distributions, Dr. rer. nat. Thesis dissertation, Otto-von-Guericke-Universität Magdeburg, 1999.

[15] M. Sibuya, Generalized hypergeometric, digamma and trigamma distributions, Annals of the Institute of Statistical Mathematics 31(3) (1979), 373-390.
DOI: https://doi.org/10.1007/BF02480295

[16] F. W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability, Annals of Probability 7(5) (1979), 893-899.
DOI: https://doi.org/10.1214/aop/1176994950

[17] F. W. Steutel, W. Vervaat and S. J. Wolfe, Integer-valued branching processes with immigration, Advances in Applied Probability 15(4) (1983), 713-725.
DOI: https://doi.org/10.2307/1427320

[18] F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York 259 (2004).

[19] R. J. Swift, Transient probabilities for a simple birth-death-immigration process under the influence of total catastrophes, International Journal of Mathematics and Mathematical Sciences 25(10) (2001), 689-692.
DOI: https://doi.org/10.1155/S0161171201005762

[20] K. van Harn, F. W. Steutel and W. Vervaat, Self-decomposable discrete distributions and branching processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 61 (1982), 97-118.

[21] W. Woess, Denumerable Markov Chains: Generating Functions, Boundary Theory, Random Walks on Trees, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2009.