[1] I. Ben-Ari, A. Roitershtein and R. B. Schinazi, A random walk with
catastrophes, Electronic Journal of Probability 24(28) (2019),
1-21.
DOI: https://doi.org/10.1214/19-EJP282
[2] P. J. Brockwell, J. Gani and S. I. Resnick, Birth, immigration and
catastrophe processes, Advances in Applied Probability 14(4) (1982),
709-731.
DOI: https://doi.org/10.2307/1427020
[3] L. Comtet, Analyse Combinatoire, Tome 1, Presses Universitaires de
France, Paris, 1970.
[4] A. Economou, The compound Poisson immigration process subject to
binomial catastrophes, Journal of Applied Probability 41(2) (2004),
508-523.
DOI: https://doi.org/10.1239/jap/1082999082
[5] R. A. Fisher, A theoretical distribution for the apparent
abundance of different species, Journal of Animal Ecology 12 (1943),
54-58.
[6] L. R. Fontes and R. B. Schinazi, Metastability of a random walk
with catastrophes, Electronic Communications in Probability 24 (2019),
1-8.
DOI: https://doi.org/10.1214/19-ECP275
[7] B. Goncalves and T. Huillet, Scaling features of two special
Markov chains involving total disasters, Journal of Statistical
Physics 178(2) (2020), 499-531.
DOI: https://doi.org/10.1007/s10955-019-02439-5
[8] B. Goncalves and T. Huillet, A generating function approach to
Markov chains undergoing binomial catastrophes, Journal of Statistical
Mechanics: Theory and Experiment (2021); Article 033402.
DOI: https://doi.org/10.1088/1742-5468/abdfcb
[9] M. Greenwood, On the statistical measure of infectiousness,
Epidemiology & Infection 31(3) (1931), 336-351.
DOI: https://doi.org/10.1017/S002217240001086X
[10] T. E. Harris, The Theory of Branching Processes, Die Grundlehren
der Mathematischen Wissenschaften, Bd. 119 Springer-Verlag, Berlin;
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
[11] M. Kac, Random walk and the theory of Brownian motion, American
Mathematical Monthly 54(7P1) (1947), 369-391.
DOI: https://doi.org/10.1080/00029890.1947.11990189
[12] M. F. Neuts, An interesting random walk on the non-negative
integers, Journal of Applied Probability 31(1) (1994), 48-58.
DOI: https://doi.org/10.2307/3215234
[13] J. R. Norris, Markov Chains, Cambridge University Press, 1998.
[14] K. Schreiber, Discrete Self-Decomposable Distributions, Dr. rer.
nat. Thesis dissertation, Otto-von-Guericke-Universität Magdeburg,
1999.
[15] M. Sibuya, Generalized hypergeometric, digamma and trigamma
distributions, Annals of the Institute of Statistical Mathematics
31(3) (1979), 373-390.
DOI: https://doi.org/10.1007/BF02480295
[16] F. W. Steutel and K. van Harn, Discrete analogues of
self-decomposability and stability, Annals of Probability 7(5) (1979),
893-899.
DOI: https://doi.org/10.1214/aop/1176994950
[17] F. W. Steutel, W. Vervaat and S. J. Wolfe, Integer-valued
branching processes with immigration, Advances in Applied Probability
15(4) (1983), 713-725.
DOI: https://doi.org/10.2307/1427320
[18] F. W. Steutel and K. van Harn, Infinite Divisibility of
Probability Distributions on the Real Line, Monographs and Textbooks
in Pure and Applied Mathematics, Marcel Dekker, Inc., New York 259
(2004).
[19] R. J. Swift, Transient probabilities for a simple
birth-death-immigration process under the influence of total
catastrophes, International Journal of Mathematics and Mathematical
Sciences 25(10) (2001), 689-692.
DOI: https://doi.org/10.1155/S0161171201005762
[20] K. van Harn, F. W. Steutel and W. Vervaat, Self-decomposable
discrete distributions and branching processes, Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete 61 (1982), 97-118.
[21] W. Woess, Denumerable Markov Chains: Generating Functions,
Boundary Theory, Random Walks on Trees, EMS Textbooks in Mathematics,
European Mathematical Society (EMS), Zürich, 2009.