[1] F. Abramovich and Y. Benjamini, Adaptive thresholding of wavelet
coefficients, Computational Statistics & Data Analysis 22(4) (1996),
351-361.
DOI: https://doi.org/10.1016/0167-9473(96)00003-5
[2] A. Antoniadis, D. Leporini and J. C. Pesquet, Wavelet thresholding
for some classes of non-Gaussian noise, Statistica Neerlandica 56(4)
(2002), 434-453.
DOI: https://doi.org/10.1111/1467-9574.00211
[3] R. Averkamp and C. Houdré, Wavelet thresholding for
non-necessarily Gaussian noise: Idealism, The Annals of Statistics
31(1) (2003), 110-151.
DOI: https://doi.org/10.1214/aos/1046294459
[4] L. Cutillo, Y. Y. Jung, F. Ruggeri and B. Vidakovic, Larger
posterior mode wavelet thresholding and applications, Journal of
Statistical Planning and Inference 138(12) (2008), 3758-3773.
DOI: https://doi.org/10.1016/j.jspi.2007.12.015
[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia,
1992.
DOI: https://doi.org/10.1137/1.9781611970104
[6] D. L. Donoho, Nonlinear Wavelet Methods of Recovery for Signals,
Densities, and Spectra from Indirect and Noisy Data, Proceedings of
Symposia in Applied Mathematics, Volume 47, American Mathematical
Society, Providence: RI, 1993.
[7] D. L. Donoho, Unconditional bases are optimal bases for data
compression and statistical estimation, Applied and Computational
Harmonic Analysis 1(1) (1993), 100-115.
DOI: https://doi.org/10.1006/acha.1993.1008
[8] D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions
on Information Theory 41(3) (1995), 613-627.
DOI: https://doi.org/10.1109/18.382009
[9] D. L. Donoho, Nonlinear solution of linear inverse problems by
wavelet-vaguelette decomposition, Applied and Computational Harmonic
Analysis 2(2) (1995), 101-126.
DOI: https://doi.org/10.1006/acha.1995.1008
[10] D. L. Donoho and I. M. Johnstone, Ideal denoising in an
orthonormal basis chosen from a library of bases, Comptes Rendus de
l’Académie des Sciences: Paris A 319 (1994), 1317-1322.
[11] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by
wavelet shrinkage, Biometrika 81(3) (1994), 425-455.
DOI: https://doi.org/10.2307/2337118
[12] D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness
via wavelet shrinkage, Journal of the American Statistical Association
90(432) (1995), 1200-1224.
[13] M. A. T. Figueiredo and R. D. Nowak, Wavelet-based image
estimation: An empirical Bayes approach using Jeffrey’s
noninformative prior, IEEE Transactions on Image Processing 10(9)
(2001), 1322-1331.
DOI: https://doi.org/10.1109/83.941856
[14] M. Jansen, Noise Reduction by Wavelet Thresholding, Springer, New
York, 2001.
[15] I. M. Johnstone and B. W. Silverman, Empirical Bayes selection of
wavelet thresholds, The Annals of Statistics 33(4) (2005),
1700-1752.
DOI: https://doi.org/10.1214/009053605000000345
[16] D. Leporini and J. C. Pesquet, Bayesian wavelet denoising: Besov
priors and non-Gaussian noises, Signal Processing 81(1) (2001),
55-67.
DOI: https://doi.org/10.1016/S0165-1684(00)00190-0
[17] S. G. Mallat, A Wavelet Tour of Signal Processing, Academic
Press, San Diego, 1998.
[18] P. A. de Morettin, Ondas e Ondaletas: Da Análise de Fourier
á Análise de Ondaletas de Séries Temporais, 2nd Edition,
São Paulo, University of São Paulo Press, 2014.
[19] G. P. Nason, Wavelet shrinkage using cross-validation, Journal of
the Royal Statistical Society: Series B (Methodological) 58(2) (1996),
463-479.
DOI: https://doi.org/10.1111/j.2517-6161.1996.tb02094.x
[20] G. P. Nason, Wavelet Methods in Statistics with R, Springer,
2008.
[21] M. H. Neumann and R. von Sachs, Wavelet Thresholding: Beyond the
Gaussian I. I. D. Situation, Wavelets and Statistics, Springer,
1995.
[22] A. R. S. dos Sousa and N. L. Garcia, Wavelet Shrinkage in
Nonparametric Regression Models with Positive Noise (2021),
arXiv:2109.06102.
[23] B. Vidakovic, Statistical Modeling by Wavelets, Wiley, New York,
1999.
DOI: https://doi.org/10.1002/9780470317020
[24] B. Vidakovic and F. Ruggeri, BAMS method: Theory and simulations,
Sankhya: The Indian Journal of Statistics: Series B 63(2) (2001),
234-249.