References

MAXIMUM LIKELIHOOD ESTIMATION FOR MULTIVARIATE NORMAL POPULATION WITH MISSING DATA USING AUXILIARY INFORMATION


[1] T. W. Anderson, Maximum likelihood estimates for a multivariate normal distribution when some observations are missing, Journal of the American Statistical Association 52(278) (1957), 200-203.
DOI: https://doi.org/10.2307/2280845

[2] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, Journal of Agriculture Science 30(2) (1940), 262-275.
DOI: https://doi.org/10.1017/S0021859600048012

[3] J. Hao and K. Krishnamoorthy, Inferences on a normal covariance matrix and generalized variance with monotone missing data, Journal of Multivariate Analysis 78(1) (2001), 62-82.
DOI: https://doi.org/10.1006/jmva.2000.1939

[4] G. O. Kadilar, A new exponential type estimator for the population mean in simple random sampling, Journal of Modern Applied Statistical Methods 15(2) (2016), 207-214.
DOI: https://doi.org/10.22237/jmasm/1478002380

[5] S. Khan, H. Ali and S. Manzoor Alamgir, A class of transformed efficient ratio estimators of finite population mean, Pakistan Journal of Statistics 31(4) (2015), 353-362.

[6] K. Krishnamoorthy and M. K. Pannala, Some simple test procedures for normal mean vector with incomplete data, Annals of the Institute of Statistical Mathematics 50(3) (1998), 531-542.
DOI: https://doi.org/10.1023/A:1003581513299

[7] K. Krishnamoorthy, Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion, Journal of Multivariate Analysis 114 (2013), 378-388.
DOI: https://doi.org/10.1016/j.jmva.2012.08.003

[8] K. Krishnamoorthy and M. K. Pannala, Confidence estimation of a normal mean vector with incomplete data, Canadian Journal of Statistics 27(2) (1999), 395-407.
DOI: https://doi.org/10.2307/3315648

[9] K. Krishnamoorthy and J. Yu, Modified Nel and Van der Merwe test for the multivariate Behrens-Fisher problem, Statistics & Probability Letters 66(2) (2004), 161-169.
DOI: https://doi.org/10.1016/j.spl.2003.10.012

[10] K. Krishnamoorthy and J. Yu, Multivariate Behrens-Fisher problem with missing data, Journal of Multivariate Analysis 105(1) (2012), 141-150.
DOI: https://doi.org/10.1016/j.jmva.2011.08.019

[11] R. J. A. Little and D. Rubin, Statistical Analysis with Missing Data, New York: Wiley, 1987.
DOI: https://doi.org/10.1002/9781119013563

[12] R. J. A. Little, A test of missing completely at random for multivariate data with missing values, Journal of American Statistical Association 83(404) (1988), 1198-1202.
DOI: https://doi.org/10.2307/2290157

[13] G. B. Lu and J. B. Copas, Missing at random, likelihood ignorability and model completeness, Annals of Statistics 32(2) (2004), 754-765.
DOI: https://doi.org/10.1214/009053604000000166

[14] M. N. Murthy, Product method of estimation, Sankhyā: The Indian Journal of Statistics, Series A 26(1) (1964), 294-307.

[15] T. Raykov, C. Lee and G. A. Marcoulides, Examining normality in incomplete data sets: A note on a multiple testing approach, Structural Equation Modeling: A Multidisciplinary Journal 23(4) (2016), 595-600.
DOI: https://doi.org/10.1080/10705511.2014.938218

[16] D. S. Robson, Applications of multivariate Polykays to the theory of unbiased ratio-type estimation, Journal of American Statistical Association 52(280) (1957), 511-522.
DOI: https://doi.org/10.2307/2281700

[17] H. P. Singh and R. Tailor, Use of known correlation coefficient in estimating the finite population means, Statistics in Transition 6(4) (2003), 555-560.

[18] R. Singh, P. Chauhan, N. Sawan, and F. Smarandache, Improvement in estimating the population mean using exponential estimator in simple random sampling, Bulletin of Statistics and Economy 3(A09) (2009), 13-18.

[19] D. J. Watson, The estimation of leaf area in field crops, Journal of Agriculture Science 27(3) (1937), 474-483.
DOI: https://doi.org/10.1017/S002185960005173X

[20] A. Yagi, T. Seo and M. S. Srivastava, Testing equality of mean vectors in a one-way MANOVA with monotone missing data, Communications in Statistics-Theory and Methods 47(22) (2018), 5534-5546.
DOI: https://doi.org/10.1080/03610926.2017.1397168

[21] T. Yamada, M. M. Romer and D. St. P. Richards, Kurtosis tests for multivariate normality with monotone, Test 24(3) (2015), 532-557.
DOI: https://doi.org/10.1007/s11749-014-0423-1

[22] Z. Yan and B. Tian, Ratio method to the mean estimation using coefficient of skewness of auxiliary variable, International Conference on Information Computing and Applications: Part II 106 (2010), 103-110.
DOI: https://doi.org/10.1007/978-3-642-16339-5_14

[23] J. Yu, K. Krishnamoorthy and M. K. Pannala, Two-sample inference for normal mean vectors based on monotone missing data, Journal of Multivariate Analysis 97(10) (2006), 2162-2176.
DOI: https://doi.org/10.1016/j.jmva.2006.07.002

[24] J. Yu, K. Krishnamoorthy and Y. He, Testing equality of two normal covariance matrices with monotone missing data, Communications in Statistics-Theory and Methods 49(16) (2019), 3911-3918.
DOI: https://doi.org/10.1080/03610926.2019.1591453