References

CONSISTENCY OF THE MODIFIED SEMI-PARAMETRIC MLE UNDER THE LINEAR REGRESSION MODEL WITH RIGHT-CENSORED DATA


[1] M. G. Akritas, S. A. Murphy and M. P. Lavalley, The Theil-Sen estimator with doubly censored data and applications to astronomy, Journal of the American Statistical Association 90(429) (1995), 170-177.
DOI: https://doi.org/10.2307/2291140

[2] P. J. Bickel, On adaptive estimation, Annals of Statistics 10(3) (1982), 647-671.
DOI: https://doi.org/10.1214/aos/1176345863

[3] J. Buckley and I. James, Linear regression with censored data, Biometrika 66(3) (1979), 429-436.
DOI: https://doi.org/10.2307/2335161

[4] S. Chatterjee and D. L. McLeish, Fitting linear regression models to censored data by least squares and maximum likelihood methods, Communications in Statistics - Theory and Methods 15(11) (1986). 3227-3243.
DOI: https://doi.org/10.1080/03610928608829305

[5] M. G. Gu and T. L. Lai, Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation, Annals of Probability 18(1) (1990), 160-189.
DOI: https://doi.org/10.1214/aop/1176990943

[6] X. M. He and L. X. Zhu, A lack-of-fit test for quantile regression, Journal of the American Statistical Association 98(464) (2003), 1013-1022.
DOI: https://doi.org/10.1198/016214503000000963

[7] P. J. Huber, Robust estimation of a location parameter, Annals of Mathematical Statistics 35(1) (1964), 73-101.
DOI: https://doi.org/10.1214/aoms/1177703732

[8] S. L. Hillis, Extending M-estimation to include censored data via James’s method, Communications in Statistics - Simulation and Computation 20(1) (1991), 121-128.
DOI: https://doi.org/10.1080/03610919108812943

[9] M. J. Ireson and P. V. Rao, Interval estimation of slope with right-censored data, Biometrika 72(3) (1985), 601-608.
DOI: https://doi.org/10.1093/biomet/72.3.601

[10] S. Leurgans, Linear models, random censoring and synthetic data, Biometrika 74(2) (1987), 301-309.
DOI: https://doi.org/10.1093/biomet/74.2.301

[11] D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, Wiley, N.Y., 1992.

[12] Art B. Owen, Empirical Likelihood, Chapman & Hall, 2001.

[13] Y. Ritov, Estimation in a linear regression model with censored data, Annals of Statistics 18(1) (1990), 303-328.
DOI: https://doi.org/10.1214/aos/1176347502

[14] H. L. Royden, Real Analysis, Macmillan, N.Y., 1968.
[15] P. K. Sen, Estimates of the regression coefficient based on Kendall’s Tau, Journal of the American Statistical Association 63(324) (1968), 1379-1389.

[16] H. Theil, A rank-invariant method of linear and polynomial regression analysis, Proceedings of the Royal Netherlands Academy of Sciences 53 (1950), 386-392.
DOI: https://doi.org/10.1007/978-94-011-2546-8_20

[17] Q. Q. Yu and G. Y. C. Wong, Modified semiparametric maximum likelihood estimator in linear regression with complete data or right-censored data, Technometrics 47(1) (2005), 34-42.
DOI: https://doi.org/10.1198/004017004000000554

[18] Q. Q. Yu and G. Y. C. Wong, How to find all Buckley-James estimates instead of just one?, Journal of Statistical Computation and Simulation 72(6) (2002), 451-460.
DOI: https://doi.org/10.1080/00949650213701

[19] Q. Q. Yu and G. Y. C. Wong, Semi-parametric MLE in simple linear regression analysis with interval-censored data, Communications in Statistics - Simulation and Computation 32(1) (2003), 147-163.
DOI: https://doi.org/10.1081/SAC-120013118

[20] Q. Q. Yu and J. Y. Dong, Identifiability conditions for the linear regression model under right censoring, Communications in Statistics - Theory and Methods (2019).
DOI: https://doi.org/10.1080/03610926.2020.1743315

[21] Q. Q. Yu, Consistency of the semi-parametric MLE under the Cox model with right-censored data, The Open Mathematics, Statistics and Probability Journal 10 (2020), 21-27.
DOI: https://doi.org/10.2174/2666148902010010021

[22] C. H. Zhang and X. Li, Linear regression with doubly censored data, Annals of Statistics 24(6) (1996), 2720-2743.
DOI: https://doi.org/10.1214/aos/1032181177