References

A NEW STRATEGY OF HYBRID MODELS USING ARIMA, ANN, AND DWT IN TIME SERIES MODELLING


[1] A. J. Conejo, M. A. Plazas, R. Espinola and A. B. Molina, Day-ahead electricity price forecasting using the wavelet transform and ARIMA models, IEEE Transactions on Power Systems 20(2) (2005), 1035-1042.
DOI: https://doi.org/10.1109/TPWRS.2005.846054

[2] M. Cottrell, B. Girard, Y. Girard, M. Mangeas and C. Muller, Neural modeling for time series: A statistical stepwise method for weight elimination, IEEE Transactions on Neural Networks 6(6) (1995), 1355-1364.
DOI: https://doi.org/10.1109/72.471372

[3] A. K. Dhamija and V. K. Bhalla, Financial time series forecasting: Comparison of neural networks and ARCH models, International Research Journal of Finance and Economics 49 (2010), 194-212.

[4] E. Guresen, G. Kayakutlu and T. U. Daim, Using artificial neural network models in stock market index prediction, Expert Systems with Applications 38(8) (2011), 10389-10397.
DOI: https://doi.org/10.1016/j.eswa.2011.02.068

[5] B. Hassibi and D. G. Stork, Second order for network pruning: Optimal brain surgeon, Advances in Neural Information Processing Systems 5 (1994), 164-171.

[6] R. J. Hyndman and Y. Khandakar, Automatic time series forecasting: The forecast package for R, Journal of Statistical Software 27(3) (2008), 1-22.
DOI: https://doi.org/10.18637/jss.v027.i03

[7] I. Khandelwal, R. Adhikari and G. Verma, Time series forecasting using hybrid ARIMA and ANN models based on DWT decomposition, Procedia Computer Science 48 (2015), 173-179.
DOI: https://doi.org/10.1016/j.procs.2015.04.167

[8] Y. Le Cun, J. S. Denker and S. A. Solla, Optimal brain damage, Advances Neural Information Process System 2 (1990), 598-605.

[9] S. Makridakis, A. Anderson, R. Carbone, R. Fildes, M. Hibon, R. Lewandowski, J. Newton, E. Parzen and R. Winkler, The accuracy of extrapolation (time series) methods: Results of a forecasting competition, Journal of Forecasting 1(2) (1982), 111-153.
DOI: https://doi.org/10.1002/for.3980010202

[10] W. Pannakkong, S. Sriboonchitta and V.-N. Huynh, An ensemble model of ARIMA and ANN with restricted Boltzmann machine based on decomposition of discrete wavelet transform for time series forecasting, Journal of Systems Science and Systems Engineering 27(5) (2018), 690-708.
DOI: https://doi.org/10.1007/s11518-018-5390-8

[11] A. Sfetsos, A comparison of various forecasting techniques applied to mean hourly wind speed time series, Renewable Energy 21(1) (2000), 23-35.
DOI: https://doi.org/10.1016/S0960-1481(99)00125-1

[12] B. L. Smith and M. J. Demetsky, Traffic flow forecasting: Comparison of modeling approaches, Journal of Transportation Engineering 123(4) (1997), 261-266.
DOI: https://doi.org/10.1061/(ASCE)0733-947X(1997)123:4(261)

[13] Z. Tang and P. A. Fishwick, Feedforward neural nets as models for time series forecasting, ORSA Journal on Computing 5(4) (1993), 374-385.
DOI: https://doi.org/10.1287/ijoc.5.4.374

[14] L. Wang, H. Zou, J. Su, L. Li and S. Chaudhry, An ARIMA-ANN hybrid model for time series forecasting, Systems Research and Behavioral Science 30(3) (2013), 244-259.
DOI: https://doi.org/10.1002/sres.2179

[15] G. P. Zhang, B. E. Patuwo and M. Y. Hu, A simulation study of artificial neural networks for nonlinear time-series forecasting, Computers & Operations Research 28(4) (2001), 381-396.
DOI: https://doi.org/10.1016/S0305-0548(99)00123-9

[16] P. G. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing 50 (2003), 159-175.
DOI: https://doi.org/10.1016/S0925-2312(01)00702-0