References

GENERALIZED BETA-EXPONENTIAL WEIBULL DISTRIBUTION AND ITS APPLICATIONS


[1] M. Alizadeh, G. M. Cordeiro, E. de Brito and C. G. B. Demetrio, The beta Marshall-Olkin family of distributions, Journal of Statistical Distributions and Applications 2(4) (2015), 1-18.
DOI: https://doi.org/10.1186/s40488-015-0027-7

[2] A. Alzaatreh, C. Lee and F. Famoye, A new method for generating families of continuous distributions, Metron 71(1) (2013), 63-79.
DOI: https://doi.org/10.1007/s40300-013-0007-y

[3] A. Alzaghal, F. Famoye and C. Lee, Exponentiated family of distributions with some applications, International Journal of Statistics and Probability 2(3) (2013), 31-49.
DOI: https://doi.org/10.5539/ijsp.v2n3p31

[4] S. K. Ashour and W. M. Afify, Estimation of the parameters of exponentiated Weibull family with type Ii progressive interval censoring with random removals, Journal of Applied Sciences Research 4(11) (2008), 1428-1442.

[5] W. Barreto-Souza, A. H. S. Santos and G. M. Cordeiro, The beta generalized exponential distribution, Journal of Statistical Computation and Simulation 80(2) (2010), 159-172.
DOI: https://doi.org/10.1080/00949650802552402

[6] M. Bourguignon, R. B. Silva and G. M. Cordeiro, The Weibull-G family of probability distributions, Journal of Data Science 12(1) (2014), 5-68.

[7] A. Choudhury, A simple derivation of moments of the exponentiated Weibull distribution, Metrika 62(1) (2005), 17-22.
DOI: https://doi.org/10.1007/s001840400351

[8] G. M. Cordeiro and M. de Castro, A new family of generalized distributions, Journal of Statistical Computation and Simulation 81(7) (2011), 883-898.
DOI: https://doi.org/10.1080/00949650903530745

[9] G. M. Cordeiro, C. T. Cristino, E. M. Hashimoto and E. M. M. Ortega, The beta generalized Rayleigh distribution with applications to lifetime data, Statistical Papers 54(1) (2013), 133-161.
DOI: https://doi.org/10.1007/s00362-011-0415-0

[10] M. A. T. Elshahat, Approximate Bayes Estimators for the Exponentiated Weibull Parameters with Progressive Internal Censoring, The 20th Annual Conference on Statistics and Modeling in Human and Social Science, Faculty of Economic and Political Science, Cairo University, Egypt (2008), 123-136.

[11] F. Famoye, C. Lee and O. Olumolade, The beta Weibull distribution, Journal of Statistical Theory and Applications 4 (2005), 121-136.

[12] R. D. Gupta and D. Kundu, Exponentiated exponential family: An alternative to gamma and Weibull Distributions, Biometrical Journal 43(1) (2001), 117-130.
DOI: https://doi.org/10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO; 2-R

[13] H. M. Salem and M. A. Selim, The generalized Weibull-exponential distribution: Properties and applications, International Journal of Statistics and Applications 4(2) (2014), 102-112.
DOI: https://doi.org/10.5923/j.statistics.20140402.04

[14] Laba Handique and Subrata Chakraborty, Beta generated Kumaraswamy-G and other new families of distribution, arXiv preprint arXiv:1603.00634 (2016), 1-34.

[15] J. F. Kenney and E. S. Keeping, Mathematics of Statistics, 101-102, Part 1, 3rd Edition, Princeton, NJ, 1962.

[16] C. Kim, J. Jung and Y. Chung, Bayesian estimation for the exponentiated Weibull model type II progressive censoring, Statistical Papers 52(1) (2011), 53-70.
DOI: https://doi.org/10.1007/s00362-009-0203-2

[17] C. Lee, F. Famoye and O. Olumolade, Beta-Weibull distribution: Some properties and applications to censored data, Journal of Modern Applied Statistical Methods 6(1) (2007), 173-186.
DOI: https://doi.org/10.22237/jmasm/1177992960

[18] M. A. W. Mahmoud and M. G. M. Ghazal, Estimations from the exponentiated Rayleigh distribution based on generalized type-II hybrid censored data, Journal of Egyptian Mathematical Society 25(1) (2017), 71-78.
DOI: https://doi.org/10.1016/j.joems.2016.06.008

[19] E. Mahmoudi, The beta generalized Pareto distribution with application to lifetime data, Mathematics and Computers in Simulation 81(11) (2011), 2414-2430.
DOI: https://doi.org/10.1016/j.matcom.2011.03.006

[20] A. L. Morais, G. M. Cordeiro and Audrey H. M. A. Cysneiros, The beta generalized logistic distribution, Brazilian Journal of Probability and Statistics 27(2) (2013), 185-200.
DOI: https://doi.org/10.1214/11-BJPS166

[21] J. J. A. Moors, A quantile alternative for kurtosis, Journal of the Royal Statistical Society: Series D 37(1) (1988), 25-32.
DOI: http://dx.doi.org/10.2307/2348376

[22] S. Nadarajah and S. Kotz, The beta exponential distribution, Reliability Engineering and System Safety 91(6) (2006), 689-697.
DOI: https://doi.org/10.1016/j.ress.2005.05.008

[23] M. M. Nassar and F. H. Eissa, On the exponentiated Weibull distribution, Communications in Statistics-Theory and Methods 32(7) (2003), 1317-1336.
DOI: https://doi.org/10.1081/STA-120021561

[24] M. M. Nassar and F. H. Eissa, Bayesian estimation for the exponentiated Weibull model, Communications in Statistics-Theory and Methods 33(10) (2005), 2343-2362.
DOI: https://doi.org/10.1081/STA-200031447

[25] P. E. Oguntunde, O. S. Balogun, H. I. Okagbue and S. A. Bishop, The Weibull-exponential distribution: Its properties and applications, Journal of Applied Sciences 15(11) (2015), 1305-1311.
DOI: https://doi.org/10.3923/jas.2015.1305.1311

[26] O. C. Okoli, G. A. Osuji, D. F. Nwosu and K. N. C. Njoku, On the modified extended generalized exponential distribution, European Journal of Statistics and Probability 4(4) (2016), 1-11.

[27] A. K. Olapade, On extended generalized exponential distribution, British Journal of Mathematics and Computer Science 4(9) (2014), 1280-1289.
DOI: https://doi.org/10.9734/BJMCS/2014/8191

[28] M. Pal, M. M. Ali and J. Woo, Exponentiated Weibull distribution, Statistica 66(2) (2006), 139-147.
DOI: https://doi.org/10.6092/issn.1973-2201/493

[29] R. R. Pescim, C. G. B. Demétrio, G. M. Cordeiro, E. M. M. Ortega and M. R. Urbano, The beta generalized half-normal distribution, Computation Statistics and Data Analysis 54(4) (2010), 945-957.
DOI: https://doi.org/10.1016/j.csda.2009.10.007

[30] A. M. Salem and O. E. Abo-Kasem, Estimation for the parameters of the exponentiated Weibull distribution based on progressive hybrid censored samples, International Journal of Contemporary Mathematical Sciences 6(35) (2011), 1713-1724.

[31] R. L. Smith and J. C. Naylor, A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution, Journal of the Royal Statistical Society: Series C 36(3) (1987), 358-369.
DOI: https://doi.org/10.2307/2347795

[32] N. Singla, K. Jain and S. K. Sharma, The beta generalized Weibull distribution: Properties and applications, Reliability Engineering System Safety 102 (2012), 5-15.
DOI: https://doi.org/10.1016/j.ress.2012.02.003

[33] L. Zea, R. Silva, M. Bourguignon, A. Santos and M. Corderio, The beta exponentiated Pareto distribution with application to bladder cancer susceptibility, International Journal of Statistics and Probability 1(2) (2012), 8-19.
DOI: https://doi.org/10.5539/ijsp.v1n2p8