References

ISSUES WITH THE RANDOM EFFECTS APPROACH IN META-ANALYSIS OF SPARSE INCIDENCE DATA


[1] R. DerSimonian and N. Laird, Meta-analysis in clinical trials, Controlled Clinical Trials 7(3) (1986), 177-188.
DOI: https://doi.org/10.1016/0197-2456(86)90046-2

[2] T. Cai, L. Parast and L. Ryan, Meta-analysis for rare events, Statistics in Medicine 29(20) (2010), 2078-2089.
DOI: https://doi.org/10.1002/sim.3964

[3] M. J. Spittal, J. Pirkis and L. C. Gurrin, Meta-analysis of incidence rate data in the presence of zero events, BMC Medical Research Methodology 15 (2015); Article 42.
DOI: https://doi.org/10.1186/s12874-015-0031-0

[4] M. J. Sweeting, A. J. Sutton and P. C. Lambert, What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data, Statistics in Medicine 23(9) (2004), 1351-1375.
DOI: https://doi.org/10.1002/sim.1761

[5] O. Kuss, Statistical methods for meta-analyses including information from studies without any events–add nothing to nothing and succeed nevertheless, Statistics in Medicine 34(7) (2015), 1097-1116.
DOI: https://doi.org/10.1002/sim.6383

[6] J. Cheng, E. Pullenayegum, J. K. Marshall, A. Iorio and L. Thabane, Impact of including or excluding both-armed zero-event studies on using standard meta-analysis methods for rare event outcome: A simulation study, BMJ Open 6(8) (2016), 1-10.
DOI: http://dx.doi.org/10.1136/bmjopen-2015-010983

[7] J. J. Shuster and M. A. Walker, Low-event-rate meta-analyses of clinical trials: Implementing good practices, Statistics in Medicine 35(14) (2016), 2467 -2478.
DOI: https://doi.org/10.1002/sim.6844

[8] D. Bohning, K. Mylona and A. Kimber, Meta-analysis of clinical trials with rare events, Biometrical Journal 57(4) (2015), 633-648.
DOI: https://doi.org/10.1002/bimj.201400184

[9] T. Stijnen, T. H. Hamza and P. Ozdemir, Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data, Statistics in Medicine 29(29) (2010), 3046-3067.
DOI: https://doi.org/10.1002/sim.4040

[10] C. E. McCulloch and J. M. Neuhaus, Misspecifying the shape of a random effects distribution: Why getting it wrong may not matter, Statistical Science 26(3) (2011), 388-402.
DOI: https://doi.org/10.1214/11-STS361

[11] J. M. Neuhaus, C. E. McCulloch and R. Boylan, Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercepts and slopes, Statistics in Medicine 3142 (2013), 2419-2429.
DOI: https://doi.org/10.1002/sim.5682

[12] S. Litiere, A. Alonso and G. Molenberghs, The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models, Statistics in Medicine 27(16) (2008), 3125-3144.
DOI: https://doi.org/10.1002/sim.3157

[13] E. Milanzi, A. Alonso and G. Molenberghs, Ignoring overdispersion in hierarchical loglinear models: Possible problems and solutions, Statistics in Medicine 31(14) (2012), 1475-1482.
DOI: https://doi.org/10.1002/sim.4482

[14] S. Litiere, A. Alonso and G. Molenberghs, Type I and type II error under random-effects misspecification in generalized linear mixed models, Biometrics 63(4) (2007), 1038-1044.
DOI: https://doi.org/10.1111/j.1541-0420.2007.00782.x

[15] G. Verbeke and E. Lesaffre, The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data, Computational Statistics & Data Analysis 23(4) (1997), 541-556.
DOI: https://doi.org/10.1016/S0167-9473(96)00047-3

[16] J. Pirkis, M. J. Spittal, G. Cox, J. Robinson, Y. T. D. Cheung and D. Studdert, The effectiveness of structural interventions at suicide hotspots: A meta-analysis, International Journal of Epidemiology 42(2) (2013), 541-548.
DOI: https://doi.org/10.1093/ije/dyt021

[17] Y. Y. Chen, K. C. C. Yu and P. S. F. Yip, Suicide Prevention Through Restricting Access to Suicide Means and Hotspots In: International Handbook for Suicide Prevention: Research, Policy and Practice, Wiley-Blackwell, Chichester, 2011.
DOI: https://doi.org/10.1002/9781119998556.ch31

[18] J. J. Mann, A. Apter, J. Bertolote, A. Beautrais, D. Currier et al., Suicide prevention strategies: A systematic review, JAMA 294(16) (2005), 2064-2074.
DOI: https://doi.org/10.1001/jama.294.16.2064

[19] C. E. McCulloch, S. R. Searle and J. M. Neuhaus, Generalized Linear, and Mixed Models, Wiley & Sons, 2008.

[20] K. P. Nelson, S. R. Lipsitz, G. M. Fitzmaurice, J. Ibrahim, M. Parzen and R. Strawderman, Use of the probability integral transformation to fit nonlinear mixed-effects models with nonnormal random effects, Journal of Computational and Graphical Statistics 15(1) (2006), 39-57.
DOI: https://doi.org/10.1198/106186006X96854