References

BAYESIAN PREDICTION FOR THE EXPONENTIATED GAMMA DISTRIBUTION BASED ON UNIFIED HYBRID CENSORED SCHEME


[1] R. C. Gupta, P. L. Gupta and R. D. Gupta, Modeling failure time data by Lehman alternatives, Communications in Statistics - Theory and Methods 27(4) (1998), 887-904.
DOI: https://doi.org/10.1080/03610929808832134

[2] R. A. Bakoban, A study on mixture of exponential and exponentiated gamma distributions, Advances and Applications in Statistical Sciences 2(1) (2010), 101-127.

[3] A. I. Shawky and R. A. Bakoban, Bayesian and non-Bayesian estimations on the exponentiated gamma distribution, Applied Mathematical Sciences 2(51) (2008), 2521-2530.

[4] Sanjay Kumar Singh, Umesh Singh and Abhimanyu Singh Yadav, Bayesian estimation for exponentiated gamma distribution under progressive Type-II censoring using different approximation techniques, Journal of Data Science 13(3) (2015), 551-568.

[5] B. Epstein, Truncated life-test in exponential case, The Annals of Mathematical Statistics 25(3) (1954), 555-564.
DOI: https://doi.org/10.1214/aoms/1177728723

[6] A. Childs, B. Chandrasekar, N. Balakrishnan and D. Kundu, Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics 55(2) (2003), 319-330.
DOI: https://doi.org/10.1007/BF02530502

[7] B. Chandrasekar, A. Childs and N. Balakrishnan, Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring, Naval Research Logistic 51(7) (2004), 994-1004.
DOI: https://doi.org/10.1002/nav.20038

[8] N. Balakrishnan, A. Rasouli and N. Sanjari Farsipour, Exact likelihood inference based on an unified hybrid censored sample from the exponential distribution, Journal of Statistical Computation and Simulation 78(5) (2008), 475-788.
DOI: https://doi.org/10.1080/00949650601158336

[9] N. Balakrishnan and A. R. Shafay, One- and two-sample Bayesian prediction intervals based on Type-II hybrid censored data, Communications in Statistics - Theory and Methods 41(9) (2012), 1511-1531.
DOI: https://doi.org/10.1080/03610926.2010.543300

[10] A. R. Shafay, Bayesian estimation and prediction based on generalized Type-II hybrid censored sample, Journal of Statistical Computation and Simulation 86(10) (2016), 1970-1988.
DOI: https://doi.org/10.1080/00949655.2015.1096361

[11] A. R. Shafay, Bayesian estimation and prediction based on generalized Type-I hybrid censored sample, Communications in Statistics - Theory and Methods 46(10) (2017), 4870-4887.
DOI: https://doi.org/10.1080/03610926.2015.1089292

[12] M. M. Mohie-El-Din, M. Nagy and A. R. Shafay, Statistical inference under unified hybrid censoring scheme, Journal of Statistics Applications and Probability 6(1) (2017), 149-167.
DOI: http://dx.doi.org/10.18576/jsap/060113

[13] A. R. Shafay and N. Balakrishnan, One- and two-sample Bayesian prediction intervals based on Type-I hybrid censored data, Communications in Statistics Simulation and Computation 41(1) (2012), 65-88.
DOI: https://doi.org/10.1080/03610918.2011.579367

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines, Journal of Chemical Physics 21(6) (1953), 1087-1091.
DOI: https://doi.org/10.1063/1.1699114

[15] M. G. M. Ghazal and H. M. Hasaballah, Bayesian prediction based on unified hybrid censored data from the exponentiated Rayleigh distribution, Journal of Statistics Applications and Probability Letters 5(3) (2018), 103-118.
DOI: https://doi.org/10.18576/jsapl/050301