References

KERNEL DENSITY ESTIMATION FOR LINEAR PROCESSES WITH DEPENDENT INNOVATIONS: ASYMPTOTIC NORMALITY


[1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

[2] K. C. Chanda, Density estimation for linear processes, Annals of the Institute of Statistical Mathematics 35(3) (1983), 439-446.
DOI: https://doi.org/10.1007/BF02481000

[3] L. Devroye and L. Györfi, Nonparametric Density Estimation: The View, Wiley, New York, 1985.

[4] P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Processes and their Applications 84(2) (1999), 313-342.
DOI: https://doi.org/10.1016/S0304-4149(99)00055-1

[5] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50(4) (1982), 987-1007.
DOI: https://doi.org/10.2307/1912773

[6] M. Hallin and L. T. Tran, Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation, Annals of the Institute of Statistical Mathematics 48(3) (1996), 429-449.
DOI: https://doi.org/10.1007/BF00050847

[7] L. Hamdad, O. Benrabah and S. Dabo-Niang, Kernel density and regression estimations for linear processes with mixing innovations, Journal of Statistics: Advances in Theory and Applications 4(1) (2010), 41-72.

[8] H.-C. Ho and T. Hsing, On the asymptotic expansion of the empirical process of long-memory moving averages, The Annals of Statistics 24(3) (1996), 992-1024.
DOI: https://doi.org/10.1214/aos/1032526953

[9] T. Honda, Nonparametric density estimation for a long-range dependent linear process, Annals of the Institute of Statistical Mathematics 52(4) (2000), 599-611.
DOI: https://doi.org/10.1023/A:1017504723799

[10] T. Honda, Nonparametric density estimation for linear processes with infinite variance, Annals of the Institute of Statistical Mathematics 61(2) (2009), 413-439.
DOI: https://doi.org/10.1007/s10463-007-0149-x

[11] Z. Lu, Asymptotic normality of kernel density estimators under dependence, Annals of the Institute of Statistical Mathematics 53(3) (2001), 447-468.
DOI: https://doi.org/10.1023/A:1014652626073

[12] A. Schick and W. Wefelmeyer, Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes, Statistics & Probability Letters 76(16) (2006), 1756-1760.
DOI: https://doi.org/10.1016/j.spl.2006.04.021

[13] A. A. Weiss, Arma models with arch errors, Journal of Time Series Analysis 5(2) (1984), 129-143.
DOI: https://doi.org/10.1111/j.1467-9892.1984.tb00382.x

[14] J. Mielniczuk and W. B. Wu, Kernel density estimation for linear processes, Annals of Statistics 30(5) (2002), 1441-1459.
DOI: https://doi.org/10.1214/aos/1035844982

[15] W. B. Wu, Y. Huang and Y. Huang, Kernel estimation for time series: An asymptotic theory, Stochastic Processes and their Applications 120(12) (2010), 2412-2431.
DOI: https://doi.org/10.1016/j.spa.2010.08.001