References

GENERALIZED DIAGONAL EXPONENT CONDITIONAL SYMMETRY MODELS FOR SQUARE CONTINGENCY TABLES WITH ORDERED CATEGORIES


[1] A. Agresti, Analysis of Ordinal Categorical Data, New York: Wiley, 1984.

[2] V. P. Bhapkar and J. N. Darroch, Marginal symmetry and quasi symmetry of general order, Journal of Multivariate Analysis 34(2) (1990), 173-184.
DOI: https://doi.org/10.1016/0047-259X(90)90034-F

[3] A. H. Bowker, A test for symmetry in contingency tables, Journal of the American Statistical Association 43(244) (1948), 572-574.

[4] H. Caussinus, Contribution à l’analyse statistique des tableaux de corrélation, Annales de la Faculté des Sciences de l’Université de Toulouse 29(4) (1965), 77-182.

[5] J. N. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models, Annals of Mathematical Statistics 43(5) (1972), 1470-1480.
DOI: https://doi.org/10.1214/aoms/1177692379

[6] J. N. Darroch and S. D Silvey, On testing more than one hypothesis, Annals of Mathematical Statistics 34(2) (1963), 555-567.
DOI: https://doi.org/10.1214/aoms/1177704168

[7] M. Haber, Maximum likelihood methods for linear and log-linear models in categorical data, Computational Statistics and Data Analysis 3 (1985), 1-10.
DOI: https://doi.org/10.1016/0167-9473(85)90053-2

[8] K. Iki, A. Shibuya and S. Tomizawa, Generalized diagonal exponent symmetry model and its orthogonal decomposition for square contingency tables with ordered categories, Journal of Statistics: Advances in Theory and Applications 14(2) (2015), 207-220.
DOI: http://dx.doi.org/10.18642/jsata_7100121584

[9] K. Iki, A. Shibuya and S. Tomizawa, Diagonal exponent conditional symmetry model for square contingency tables with ordered categories, International Journal of Statistics and Probability 5 (2016), 38-44.
DOI: https://doi.org/10.5539/ijsp.v5n4p38

[10] K. Iki, K. Yamamoto and S. Tomizawa, Quasi-diagonal exponent symmetry model for square contingency tables with ordered categories, Statistics and Probability Letters 92 (2014), 33-38.
DOI: https://doi.org/10.1016/j.spl.2014.04.029

[11] P. McCullagh, A class of parametric models for the analysis of square contingency tables with ordered categories, Biometrika 65(2) (1978), 413-418.
DOI: https://doi.org/10.1093/biomet/65.2.413

[12] C. B. Read, Partitioning chi-square in contingency table: A teaching approach, Communications in Statistics-Theory and Methods 6(6) (1977), 553-562.
DOI: https://doi.org/10.1080/03610927708827513

[13] S. Tomizawa, A model of symmetry with exponents along every subdiagonal and its application to data on unaided vision of pupils at Japanese elementary schools, Journal of Applied Statistics 19(4) (1992), 509-512.
DOI: https://doi.org/10.1080/02664769200000046