References

A PSEUDO-LIKELIHOOD APPROACH FOR THE META-ANALYSIS OF HOMOGENEOUS TREATMENT EFFECTS: EXPLOITING THE INFORMATION CONTAINED IN SINGLE-ARM AND DOUBLE-ZERO STUDIES


[1] D. Böhning, R. Kuhnert and S. Rattanasiri, Meta-Analysis of Binary Data Using Profile Likelihood, CRC Press, 2008.

[2] M. J. Bradburn, J. J. Deeks, J. A. Berlin and A. Russell Localio, Much ado about nothing: A comparison of the performance of meta-analytical methods with rare events, Statistics in Medicine 26(1) (2007), 53-77.
DOI: https://doi.org/10.1002/sim.2528

[3] S. Dias and A. E. Ades, Absolute or relative effects? Arm-based synthesis of trial data, Research Synthesis Methods 7(1) (2015), 23-28.
DOI: https://doi.org/10.1002/jrsm.1184

[4] O. Efthimiou, Practical guide to the meta-analysis of rare events, Evidence-Based Mental Health 21(2) (2018), 72-76.
DOI: http://dx.doi.org/10.1136/eb-2018-102911

[5] J. O. Friedrich, N. K. Adhikari and J. Beyene, Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data, BMC Medical Research Methodology 7 (2007); Article 5.
DOI: https://doi.org/10.1186/1471-2288-7-5

[6] F. Keus, J. Wetterslev, C. Gluud, H. G. Gooszen and C. J. van Laarhoven, Robustness assessments are needed to reduce bias in meta-analyses that include zero-event randomized trials, American Journal of Gastroenterology 104(3) (2009), 546-551.

[7] O. Kuss, J. F. Gummert and J. Borgermann, Meta-analysis with rare events should use adequate methods, The Journal of Thoracic and Cardiovascular Surgery 136(1) (2008), 241.

[8] O. Kuss, Statistical methods for meta-analyses including information from studies without any events – add nothing to nothing and succeed nevertheless, Statistics in Medicine 34(7) (2015), 1097-1116.
DOI: https://doi.org/10.1002/sim.6383

[9] E. Kontopantelis, D. A. Springate and D. Reeves, A re-analysis of the Cochrane library data: The dangers of unobserved heterogeneity in meta-analyses, Plos One 8(7) (2013), e69930.
DOI: https://doi.org/10.1371/journal.pone.0069930

[10] I. C. Marschner and A. C. Gillett, Relative risk regression: Reliable and flexible methods for log-binomial models, Biostatistics 13(1) (2012), 179-192.
DOI: https://doi.org/10.1093/biostatistics/kxr030

[11] D. Moher, J. Tetzlaff, A. A. Tricco, M. Sampson and D. G. Altman, Epidemiology and reporting characteristics of systematic reviews, PLoS Medicine 4(3) (2007), e78.
DOI: https://doi.org/10.1371/journal.pmed.0040078

[12] S. L. T. Normand, Meta-analysis: Formulating, evaluating, combining, and reporting, Statistics in Medicine 18(3) (1999), 321-359.
DOI: https://doi.org/10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3 .0.CO;2-P

[13] R. Piaget-Rossel and P. Taffé, Meta-analysis of rare events under the assumption of a homogeneous treatment effect, Accepted for publication in Biometrical Journal (2019).

[14] C. Röver, F. Knapp and T. Friede, Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies, BMC Medical Research Methodology 15 (2015); Article 99.
DOI: https://doi.org/10.1186/s12874-015-0091-1

[15] M. J. Sweeting, A. J. Sutton and P. C. Lambert, What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data, Statistics in Medicine 23(9) (2004), 1351-1375.
DOI: https://doi.org/10.1002/sim.1761

[16] A. Toussaint, Width of Margins in Phyllodes Tumors of the Breast: The Controversy Drags on: A Systematic Review, Diplôme inter-Universitaire de Sénologie et Pathologie Mammaire, François-Rabelais University and Rennes University, Tours and Rennes, 2017.

[17] H. White, Maximum likelihood estimation of misspecified models, Econometrica 50(1) (1982), 1-26.