References

MEASURE FOR DEPARTURE FROM CUMULATIVE PARTIAL SYMMETRY FOR SQUARE CONTINGENCY TABLES WITH ORDERED CATEGORIES


[1] A. Agresti, Categorical Data Analysis, 3rd Edition, John Wiley and Sons, Hoboken, New Jersey, 2013.

[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, 1975.
DOI: https://doi.org/10.1007/978-0-387-72806-3

[3] A. H. Bowker, A test for symmetry in contingency tables, Journal of the American Statistical Association 43(244) (1948), 572-574.

[4] K. Hashimoto, Gendai Nihon no Kaikyu Kozo (Class Structure in Modern Japan: Theory, Method and Quantitative Analysis), Toshindo Press, Tokyo (in Japanese), 1999.

[5] J. M. Lachin, Biostatistical Methods: The Assessment of Relative Risks, 2nd Edition, John Wiley and Sons, Hoboken, New Jersey, 2011.

[6] G. P. Patil and C. Taillie, Diversity as a concept and its measurement, Journal of the American Statistical Association 77(379) (1982), 548-561.

[7] Y. Saigusa, K. Tahata and S. Tomizawa, Measure of departure from partial symmetry for square contingency tables, Journal of Mathematics and Statistics 12(3) (2016), 152-156.
DOI: https://doi.org/10.3844/jmssp.2016.152.156

[8] S. Tomizawa, N. Miyamoto and Y. Hatanaka, Measure of asymmetry for square contingency tables having ordered categories, The Australian and New Zealand Journal of Statistics 43(3) (2001), 335-349.
DOI: https://doi.org/10.1111/1467-842X.00180

[9] S. Tomizawa, T. Seo and H. Yamamoto, Power-divergence-type measure of departure from symmetry for square contingency tables that have nominal categories, Journal of Applied Statistics 25(3) (1998), 387-398.
DOI: https://doi.org/10.1080/02664769823115