References

AN ALTERNATIVE TEST OF RANK-ORDER ASSOCIATION IN THE PRESENCE OF TIES


[1] I. L. Amerise and A. Tarsitano, Correction methods for ties in rank correlations, Journal of Applied Statistics 42(12) (2015), 2584-2596.
DOI: https://doi.org/10.1080/02664763.2015.1043870

[2] I. L. Amerise, M. Marozzi and A. Tarsitano, Pvrank: Rank Correlations, R Package Version 1.1.2, 2016.
http://CRAN.R-project.org/package=pvrank

[3] A. Tarsitano and I. L. Amerise, Effectiveness of rank correlations in curvilinear relationships, Behaviormetrika 44(2) (2017), 351-368.
DOI: https://doi.org/10.1007/s41237-017-0020-1

[4] A. D. Barbour and L. H. Y. Chen, The permutation distribution matrix correlation statistics, In: A. D. Barbour and L. H. Y. Chen (Editors), Stein‘s Method and Applications, Singapore University Press (2005), 223-245.

[5] O. Chisini, Sul Concetto di Media, Periodico di Matematiche 9(2) (1929), 106-116.

[6] D. M. Cifarelli, P. L. Conti and E. Regazzini, On the asymptotic distribution of a general measure of monotone dependence, The Annals of Statistics 24(3) (1996), 1386-1399.
DOI: https://doi.org/10.1214/aos/1032526975

[7] P. H. DuBois, Formulas and tables for rank correlation, The Psychological Record 3 (1939), 46-56.

[8] R. A. Gideon and A. Hollister, A rank correlation coefficient resistant to outliers, Journal of the American Statistical Association 82(398) (1987), 656-666.

[9] C. Gini, Sulla determinazione dell’indice di cograduazione, Metron 13 (1939), 41-48.

[10] G. Girone, S. Montrone and D. Leogrande, La distribuzione campionaria dell’indice di cograduazione di Gini per dimensioni campionarie fino a 24, Annali del Dipartimento di Scienze Statistiche “Carlo Cecchi”, Università degli Studi di Bari 24 (2010), 246-271.

[11] W. Hoeffding, A non-parametric test of independence, The Annals of Mathematical Statistics 19(4) (1948), 546-557.
DOI: https://doi.org/10.1214/aoms/1177730150

[12] M. G. Kendall, The treatment of ties in ranking problems, Biometrika 33(3) (1945), 239-251.
DOI: https://doi.org/10.1093/biomet/33.3.239

[13] W. Maciak, Exact null distribution for and probability approximations for Spearman’s score in an absence of ties, Journal of Nonparametric Statistics 21(1) (2009), 113-133.
DOI: https://doi.org/10.1080/10485250802401038

[14] A. Mango, A distance function for ranked variables: A proposal for a new rank correlation coefficient, Metodološski Zvezki 3(1) (2006), 9-19.

[15] P. Muliere and G. Parmigiani, Utility and means in the 1930s, Statistical Science 8(4) (1993), 421-432.
DOI: https://doi.org/10.1214/ss/1177010786

[16] E. B. Niven and C. V. Deutsch, Calculating a robust correlation coefficient and quantifying its uncertainty, Computers & Geosciences 40 (2012), 1-9.
DOI: https://doi.org/10.1016/j.cageo.2011.06.021

[17] M. Panneton and P. Robillard, Algorithm AS 54: Kendall’s S frequency distribution, Journal of the Royal Statistical Society, Series C 21(3) (1972), 345-348.
DOI: https://doi.org/10.2307/2346291

[18] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, New York, 1987.

[19] A. Tarsitano and R. Lombardo, A coefficient of correlation based on ratios of ranks and anti-ranks, Jahrbucher für Nationalökonomie und Statistik 233(2) (2013), 206-224.
DOI: https://doi.org/10.1515/jbnst-2013-0205

[20] A. Tarsitano and I. L. Amerise, On a new measure of rank-order association, Journal of Statistical and Econometric Methods 4(2) (2015), 1-4.

[21] L. Zhao, Z. Bai, C. C. Chao and W.-Q. Liang, Error bound in a central limit theorem of double-indexed permutation statistics, The Annals of Statistics 25(5) (1997), 2210-2227.
DOI: https://doi.org/10.1214/aos/1069362395

[22] Z. Zhang, Quotient correlation: A sample based alternative to Pearson’s correlation, The Annals of Statistics 36(2) (2008), 1007-1030.
DOI: https://doi.org/10.1214/009053607000000866