References

CONDITIONAL HETEROSKEDASTICITY IN CRYPTO-ASSET RETURNS


[1] Y. Ait-Sahalia and J. Jacod, Estimating the degree of activity of jumps in high frequency data, The Annals of Statistics 37(5A) (2009), 2202-2244.
DOI: https://doi.org/10.1214/08-AOS640

[2] Y. Ait-Sahalia and J. Jacod, High-Frequency Financial Econometrics, Princeton University Press, 2014.

[3] Y. Ait-Sahalia and D. Xiu, Increased correlation among asset classes: Are volatility or jumps to blame, or both?, Journal of Econometrics 194(2) (2016), 205-219.
DOI: https://doi.org/10.1016/j.jeconom.2016.05.002

[4] J. Bai, Testing parametric conditional distributions of dynamic models, The Review of Economics and Statistics 85(3) (2003), 531-549.
DOI: https://doi.org/10.1162/003465303322369704

[5] K. Balcombe and I. Fraser, Do bubbles have an explosive signature in Markov switching models?, Economic Modelling 66 (2017), 81-100.
DOI: https://doi.org/10.1016/j.econmod.2017.06.001

[6] A. Behme, C. Kluppelberg and K. Mayr, Asymmetric COGARCH processes, Journal of Applied Probability 51(A) (2014), 161-173.
DOI: https://doi.org/10.1239/jap/1417528473

[7] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31(3) (1986), 307-327.
DOI: https://doi.org/10.1016/0304-4076(86)90063-1

[8] George E. P. Box and Norman R. Draper, Empirical Model-Building and Response Surfaces, p. 424, Wiley, 1987.

[9] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 2nd Edition, New York: Springer, 1991.

[10] C. Brooks and A. Katsaris, A three-regime model of speculative behaviour: Modelling the evolution of the S&P 500 composite index, The Economic Journal 115(505) (2005), 767-797.
DOI: https://doi.org/10.1111/j.1468-0297.2005.01019.x

[11] V. Cermak, Can Bitcoin Become a Viable Alternative to Fiat Currencies? An Empirical Analysis of Bitcoin’s Volatility Based on a GARCH Model, 2017.
DOI: http://dx.doi.org/10.2139/ssrn.2961405

[12] A. Cheung, E. Roca and J. Su, Cryptocurrency bubbles: An application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox Bitcoin prices, Applied Economics 47(23) (2015), 2348-2358.
DOI: https://doi.org/10.1080/00036846.2015.1005827

[13] J. Chu, S. Chan, S. Nadarajah and J. Osterrieder, GARCH modelling of cryptocurrencies, Journal of Risk and Financial Management 10(4) (2017), Article 17.
DOI: https://doi.org/10.3390/jrfm10040017

[14] CoinMetrics, Cryptocurrency Market Capitalizations, (accessed on 5 November 2017), 2017.
Available online: https://coinmetrics.io/data-downloads/

[15] V. Corradi and N. R. Swanson, Bootstrap conditional distribution tests in the presence of dynamic misspecification, Journal of Econometrics 133(2) (2006), 779-806.
DOI: https://doi.org/10.1016/j.jeconom.2005.06.013

[16] G. M. Caporale and T. Zerokh, Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models, CESifo Working Paper No. 7167 (2018).

[17] J.-C. Duan, The GARCH option pricing model, Mathematical Finance 5(1) (1995), 13-32.
DOI: https://doi.org/10.1111/j.1467-9965.1995.tb00099.x

[18] J.-C. Duan, Augmented GARCH (p, q) process and its diffusion limit, Journal of Econometrics 79(1) (1997), 97-127.
DOI: https://doi.org/10.1016/S0304-4076(97)00009-2

[19] J.-C. Duan, G. Gauthier and J.-G. Simonato, An analytical approximation for the GARCH option pricing model, Journal of Computational Finance 2(4) (1999), 75-116.
DOI: https://doi.org/10.21314/JCF.1999.033

[20] J.-C. Duan, G. Gauthier, C. Sasseville and J.-G. Simonato, Analytical approximations for the GJR-GARCH and EGARCH option pricing models, Tech. Rep. G-2004-82, Les Cahiers du GERAD (2004).

[21] R. F. Engle and T. Bollerslev, Modelling the persistence of conditional variances, Econometric Reviews 5(1) (1986), 1-50.
DOI: https://doi.org/10.1080/07474938608800095

[22] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50(4) (1982), 987-1007.
DOI: https://doi.org/10.2307/1912773

[23] R. F. Engle and V. K. Ng, Measuring and testing the impact of news on volatility, The Journal of Finance 48(5) (1993), 1749-1778.
DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05127.x

[24] V. Fasen, C. Kluppelberg and A. Lindner, Extremal behavior of stochastic volatility models, In: A. N. Shiryaev, M. R. Grossinho, P. E. Oliviera and M. Esquivel (Editors), Stochastic Finance, New York: Springer (2005), 107-155.

[25] C. Francq and J.-M. Zakoian, GARCH Models: Structure, Statistical Inference and Financial Applications, 2010.

[26] K. Ghoudi and B. Remillard, Comparison of specification tests for GARCH models, Computational Statistics & Data Analysis 76 (2014), 291-300.
DOI: https://doi.org/10.1016/j.csda.2013.03.009

[27] L. R. Glosten, R. Jagannathan and D. E. Runkle, On the relationship between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance 48(5) (1993), 1779-1801.
DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x

[28] M. Gronwald, The Economics of Bitcoins - Market Characteristics and Price Jumps, CESifo Working Paper Series No. 5121 (2014).
Available at: https://ssrn.com/abstract=2548999

[29] C. Gourieroux and A. Monfort, Statistics and Econometric Models, Cambridge University Press, Cambridge, 1995.

[30] C. Gourieroux and A. Monfort, Time Series and Dynamic Models, Cambridge University Press, Cambridge, 1996.
DOI: https://doi.org/10.1017/CBO9780511628597

[31] E. Jondeau and M. Rockinger, Conditional volatility, skewness and kurtosis: Existence, persistence, and comovements, Journal of Economic Dynamics & Control 27(10) (2003), 1699-1737.
DOI: https://doi.org/10.1016/S0165-1889(02)00079-9

[32] S. G. Hall, Z. Psaradakis and M. Sola, Detecting periodically collapsing bubbles: A Markov-switching unit root test, Journal of Applied Econometrics 14(2) (1999), 143-154.
DOI: https://doi.org/10.1002/(SICI)1099-1255(199903/04)14:2<143::AID-JAE500 >3.0.CO;2-X

[33] C. Kluppelberg, A. Lindner and R. Maller, A continuous-time GARCH process driven by a Levy process: Stationarity and second-order behaviour, Journal of Applied Probability 41(3) (2004), 601-622.
DOI: https://doi.org/10.1239/jap/1091543413

[34] C. Kluppelberg, A. Lindner and R. Maller, Continuous Time Volatility Modelling: COGARCH Versus Ornstein-Uhlenbeck Models, In: Kabanov, Y., Lipster, R. and Stoyanov, J. (Eds.) From Stochastic Calculus to Mathematical Finance, The Shiryaev Festschrift (2006), 393-419. Berlin: Springer.
DOI: https://doi.org/10.1007/978-3-540-30788-4_21

[35] P. Katsiampa, Volatility estimation for Bitcoin: A comparison of GARCH models, Economics Letters 158 (2017), 3-6.
DOI: https://doi.org/10.1016/j.econlet.2017.06.023

[36] D. B. Nelson, ARCH models as diffusion approximations, J. Econometrics 45 (1990), 7-38.

[37] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59(2) (1991), 347-370.
DOI: https://doi.org/10.2307/2938260

[38] E. V. Khmaladze, An innovation approach to goodness-of-fit tests in The Annals of Statistics 16(4) (1988), 1503-1516.
DOI: https://doi.org/10.1214/aos/1176351051

[39] P. C. B. Phillips, Shu-Ping Shi and J. Yu, Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500, International Economic Review 56(4) (2015), 1043-1078.
DOI: https://doi.org/10.1111/iere.12132

[40] Reuters, 2017. https://goo.gl/2n75gk, accessed 5 November 2017.

[41] B. Remillard, Statistical Methods for Financial Engineering, Chapman and Hall, New York, 2013.

[42] V. E. Troster, Specification and Casualty of Distribution Models, University Carlos III Madrid, Doctoral Thesis, 2015.
Available via: http://hdl.handle.net/10016/21495

[43] O. Scaillet, A. Treccani and C. Trevisan, High-Frequency Jump Analysis of the Bitcoin Market, Swiss Finance Institute Research Paper No. 17-19 (2017).
DOI: http://dx.doi.org/10.2139/ssrn.2982298

[44] S. Shi and V. Arora, An application of models of speculative behaviour to oil prices, Economics Letters 115(3) (2012), 469-472.
DOI: https://doi.org/10.1016/j.econlet.2011.12.126

[45] O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics 5(2) (1977), 177-188.
DOI: https://doi.org/10.1016/0304-405X(77)90016-2