References

EXACT DISTRIBUTION OF THE LARGEST AND SMALLEST EIGENVALUES OF THE RATIO OF TWO ELLIPTICAL WISHART MATRICES


[1] F. J. Caro-Lopera, J. A. Díaz-García and G. González-Farías, Noncentral elliptical configuration density, Journal of Multivariate Analysis 101(1) (2010), 32-43.
DOI: https://doi.org/10.1016/j.jmva.2009.03.004

[2] F. J. Caro-Lopera, G. González-Farías and N. Balakrishnan, On generalized Wishart distributions-I: Likelihood ratio test for homogeneity of covariance matrices, Sankhyā: The Indian Journal of Statistics, Series A 76(2) (2014), 179-194.

[3] F. J. Caro-Lopera, G. González-Farías and N. Balakrishnan, Matrix-variate distribution theory under elliptical models-4: Joint distribution of latent roots of covariance matrix and the largest and smallest latent roots, Journal of Multivariate Analysis 145 (2016), 224-235.
DOI: https://doi.org/10.1016/j.jmva.2015.12.012

[4] Y. Chikuse, Asymptotic expansions for the joint and marginal distributions of the latent roots of Annals of the Institute of Statistical Mathematics 29(2) (1977), 221-233.

[5] Y. Fujikoshi, Asymptotic expansions for the distributions of the sample roots under nonnormality, Biometrika 67(1) (1980), 45-51.
DOI: https://doi.org/10.1093/biomet/67.1.45

[6] H. Hashiguchi, N. Takayama and A. Takemura, Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method, Journal of Multivariate Analysis 165 (2018), 270-278.
DOI: https://doi.org/10.1016/j.jmva.2018.01.002

[7] A. T. James, Distribution of matrix variates and latent roots derived from normal samples, Annals of Mathematical Statistics 35(2) (1964), 475-501.

[8] C. G. Khatri, On the exact finite series distribution of the smallest or the largest root of matrices in three situations, Journal of Multivariate Analysis 2(2) (1972), 201-207.
DOI: https://doi.org/10.1016/0047-259X(72)90027-9

[9] R. J. Muirhead, Aspects of Multivariate Statistical Theory,
John Wiley & Sons, New York, 1982.

[10] A. Shinozaki, H. Hashiguchi and T. Iwashita, Distribution of the largest eigenvalue of an elliptical Wishart matrix and its simulation, Journal of the Japanese Society of Computational Statistics 30(2) (2018), 1-12.
DOI: https://doi.org/10.5183/jjscs.1708001_244

[11] N. Sugiura, Derivatives of the characteristic root of a synmetric or a Hermitian matrix with two applications in multivariate analysis, Communications in Statistics 1(5) (1973), 393-417.
DOI: https://doi.org/10.1080/03610927308827036

[12] N. Sugiura, Asymptotic expansion of the distributions of the latent roots and the latent vector of the Wishart and multivariate F matrices, Journal of Multivariate Analysis 6(4) (1976), 500-525.
DOI: https://doi.org/10.1016/0047-259X(76)90002-6

[13] T. Sugiyama, On the distribution of the largest latent root of the covariance matrix, Annals of Mathematical Statistics 38(4) (1967), 1148-1151.