References

SHANNON ENTROPY AND CHARACTERIZATION OF NADARAJAH AND HAGHIGHI DISTRIBUTION BASED ON GENERALIZED ORDER STATISTICS


[1] B. Afhami and M. Madadi, Shannon entropy in generalized order statistics from Pareto-type distributions, Int. J. Nonlinear Anal. Appl. 4(1) (2013), 79-91.

[2] A. A. Ahmad, Single and product moments of generalized order statistics from linear exponential distribution, Comm. Statist.-Theory Methods 37(8) (2008), 1162-1172.
DOI: https://doi.org/10.1080/03610920701713344

[3] M. Ahsanullah, Generalized order statistics from exponential distribution, J. Statist. Plann. Inference 85(1-2) (2000), 85-91.
DOI: https://doi.org/10.1016/S0378-3758(99)00068-3

[4] G. Arslan, On a characterization of the uniform distribution by generalized order statistics, J. Comput. Appl. Math. 235(16) (2011), 4532-4536.
DOI: https://doi.org/10.1016/j.cam.2010.02.040

[5] N. Balakrishnan, E. Cramer and U. Kamps, Bounds for means and variances of progressive type II censored order statistics, Statist. Probab. Lett. 54(3) (2001), 301-315.
DOI: https://doi.org/10.1016/S0167-7152(01)00104-3

[6] J. S. Hwang and G. D. Lin, On a generalized moments problem II, Proc. Amer. Math. Soc. 91(4) (1984), 577-580.
DOI: https://doi.org/10.1090/S0002-9939-1984-0746093-4

[7] U. Kamps, A Concept of Generalized Order Statistics, Teubner, Stuttgart, 1995.

[8] U. Kamps, Characterizations of Distributions by Recurrence Relations and Identities for Moments of Order Statistics, In: N. Balakrishnan and C. R. Rao, Editors, Handbook of Statistics, 16, Order Statistics: Theory and Methods, Amsterdam, North-Holland (1998), 291-311.

[9] U. Kamps and E. Cramer, On distributions of generalized order statistics, Statistics 35(3) (2001), 269-280.
DOI: https://doi.org/10.1080/02331880108802736

[10] A. H. Khan and M. J. S. Khan, On ratio and inverse moments of generalized order statistics from Burr distribution, Pakistan J. Statist. 28(1) (2012), 59-68.

[11] R. U. Khan and D. Kumar, On moments of generalized order statistics from exponentiated Pareto distribution and its characterization, Appl. Math. Sci. (Ruse) 4(55) (2010), 2711-2722.

[12] A. Kulshrestha, R. U. Khan and D. Kumar, On moment generating function of generalized order statistics from Erlang-Truncated exponential distribution, Open J. Statist. 2(5) (2012), 557-564.
DOI: https://doi.org/10.4236/ojs.2012.25071

[13] D. Kumar, Generalized order statistics from Kumaraswamy distribution and its characterization, Tamsui Oxford Journal of Information and Mathematical Sciences 27(4) (2011), 463-476.

[14] D. Kumar and S. Dey, Relations for moments of generalized order statistics from extended exponential distribution, Amer. J. Math. Management Sci. 36(4) (2017), 378-400.
DOI: https://doi.org/10.1080/01966324.2017.1369474

[15] D. Kumar, S. Dey and S. Nadarajah, Extended exponential distribution based on order statistics, Comm. Statist.-Theory Methods 46(18) (2017), 9166-9184.
DOI: https://doi.org/10.1080/03610926.2016.1205625

[16] A. J. Lemonte, A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Statist. Data Anal. 62 (2013), 149-170.
DOI: https://doi.org/10.1016/j.csda.2013.01.011

[17] M. Madadi and M. Tata, The Rényi information in record data from an inverse sampling plan, General Mathematics 19(4) (2011), 19-36.

[18] M. Madadi and M. Tata, Shannon information in record data, Metrika 74(1) (2011), 11-31.
DOI: https://doi.org/10.1007/s00184-009-0287-7

[19] M. Madadi and M. Tata, Shannon information in k-records, Comm. Statist.-Theory Methods 43(15) (2014), 3286-3301.
DOI: https://doi.org/10.1080/03610926.2012.697965

[20] M. R. Mahmoud and A. S. Abd El Ghafour, Shannon entropy for the generalized Feller-Pareto (GFP) family and order statistics of GFP subfamilies, Appl. Math. Sci. 7(65) (2013), 3247-3253.
DOI: http://dx.doi.org/10.12988/ams.2013.3296

[21] S. M. T. K. MirMostafaee, A. Asgharzadeh and A. Fallah, Record values from NH distribution and associated inference, Metron 74(1) (2016), 37-59.
DOI: https://doi.org/10.1007/s40300-015-0069-0

[22] S. Nadarajah and F. Haghighi, An extension of the exponential distribution, Statistics 45(6) (2011), 543-558.
DOI: https://doi.org/10.1080/02331881003678678

[23] M. A. Selim, Estimation and prediction for Nadarajah-Haghighi distribution based on record values, Pakistan J. Statist. 34(1) (2018), 77-90.

[24] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27(3) (1948), 379-423.
DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[25] J. C. Su and W. J. Huang, Characterizations based on conditional expectations, Statist. Papers 41(4) (2000), 423-435.
DOI: https://doi.org/10.1007/BF02925761

[26] K. M. Wong and S. Chen, The entropy of ordered sequences and order statistics, IEEE Transactions of Information Theory 36(2) (1990), 276-284.
DOI: https://doi.org/10.1109/18.52473