[1] J. O. Berger and W. E. Strawderman, Choice of hierarchical priors:
Admissibility in estimation of normal means, The Annals of Statistics
24(3) (1996), 931-951.
DOI: https://doi.org/10.1214/aos/1032526950
[2] L. D. Brown, In-season prediction of batting average: A field test
of empirical Bayes and Bayes methodologies, The Annals of Applied
Statistics 2(1) (2008), 113-152.
[3] L. D. Brown and E. Greenshtein, Nonparametric empirical Bayes and
compound decision approaches to estimation of a high-dimensional
vector of means, The Annals of Statistics 37(4) (2009), 1685-1704.
DOI: https://doi.org/10.1214/08-AOS630
[4] S. K. Ghoreishi, Bayesian analysis of hierarchical heteroscedastic
linear models using Dirichlet-Laplace priors, Journal of Statistical
Theory and Applications 16(1) (2017), 53-64.
DOI: https://doi.org/10.2991/jsta.2017.16.1.5
[5] S. K. Ghoreishi and M. R. Meshkani, On SURE estimates in
hierarchical models assuming heteroscedasticity for both levels of a
two-level normal hierarchical model, Journal of Multivariate Analysis
132 (2014), 129-137.
DOI: https://doi.org/10.1016/j.jmva.2014.08.001
[6] W. James and C. M. Stein, Estimation with quadratic loss,
Proceedings of the 4th Berkeley Symposium on Probability and
Statistics 1 (1961), 367-379.
[7] A. B. Lari, Applied Linear Regression, Shiraz University Press,
Shiraz, 2006.
[8] C. M. Stein, Confidence sets for the mean of a multivariate normal
distribution (with discussion), Journal of the Royal Statistical
Society, Series B 24(2) (1962), 265-296.
[9] X. Xie, S. C. Kou and L. D. Brown, SURE estimates for a
heteroscedastic hierarchical model, Journal of the American
Statistical Association 107(500) (2012), 1465-1479.
DOI: https://doi.org/10.1080/01621459.2012.728154