References

GENERALIZED ORDER STATISTICS FROM KUMARASWAMY-BURR III DISTRIBUTION AND RELATED INFERENCE


[1] A. A. Ahmad and A. M. Fawzy, Recurrence relations for single moments of generalized order statistics from doubly truncated distributions, J. Statist. Plann. Inference 117(2) (2003), 241-249.
DOI: https://doi.org/10.1016/S0378-3758(02)00385-3

[2] M. Ahsanullah, Record Statistics, Nova Science Publishers, New York, 1995.

[3] M. Ahsanullah, Generalized order statistics from exponential distribution, J. Statist. Plann. Inference 85(1-2) (2000), 85-91.
DOI: https://doi.org/10.1016/S0378-3758(99)00068-3

[4] H. Athar and H. M. Islam, Recurrence relations for single and product moments of generalized order statistics from a general class of distributions, Metron - International Journal of Statistics LXII(3) (2004), 327-337.

[5] M. Bieniek and D. Szynal, Characterizations of distributions via linearity of regression of generalized order statistics, Metrika 58(3) (2003), 259-271.
DOI: https://doi.org/10.1007/s001840300263

[6] E. Cramer and U. Kamps, Relations for expectations of functions of generalized order statistics, J. Statist. Plann. Inference 89(1-2) (2000), 79-89.
DOI: https://doi.org/10.1016/S0378-3758(00)00074-4

[7] E. Cramer, U. Kamps and C. Keseling, Characterizations via linear regression of ordered random variables: A unifying approach, Comm. Statist. Theory Methods 33(12) (2004), 2885-2911.
DOI: https://doi.org/10.1081/STA-200038832

[8] H. A. David and H. N. Nagaraja, Order Statistics, John Wiley, New York, 2003.

[9] W. Dziubdziela and B. Kopociński, Limiting properties of the k-th record values, Appl. Math. (Warsaw) 15(2) (1976), 187-190.
DOI: https://doi.org/10.4064/am-15-2-187-190

[10] M. Habibullah and M. Ahsanullah, Estimation of parameters of a Pareto distribution by generalized order statistics, Comm. Statist. Theory Methods 29(7) (2000), 1597-1609.
DOI: https://doi.org/10.1080/03610920008832567

[11] S. Huang and B. O. Oluyede, Exponentiated Kumaraswamy-Dagum distribution with applications to income and lifetime data, Journal of Statistical Distribution and Applications 1(1) Article 8 (2014), 1-20.
DOI: https://doi.org/10.1186/2195-5832-1-8

[12] J. S. Hwang and G. D. Lin, On a generalized moments problem II, Proc. Amer. Math. Soc. 91(4) (1984), 577-580.
DOI: https://doi.org/10.1090/S0002-9939-1984-0746093-4

[13] U. Kamps, A Concept of Generalized Order Statistics, B. G. Teubner Stuttgart, Germany, 1995.

[14] U. Kamps and E. Cramer, On distribution of generalized order statistics, Statistics 35(3) (2001), 269-280.
DOI: https://doi.org/10.1080/02331880108802736

[15] U. Kamps and U. Gather, Characteristic properties of generalized order statistics from exponential distributions, Applicationes Mathematicae 24(4) (1997), 383-391.
DOI: https://doi.org/10.4064/am-24-4-383-391

[16] C. Keseling, Conditional distributions of generalized order statistics and some characterizations, Metrika 49(1) (1999), 27-40.
DOI: https://doi.org/10.1007/s001840050023

[17] A. H. Khan and A. A. Alzaid, Characterization of distributions through linear regression of non-adjacent generalized order statistics, J. Appl. Statist. Sci. 13 (2004), 123-136.

[18] A. H. Khan, R. U. Khan and M. Yaqub, Characterization of continuous distributions through conditional expectation of function of generalized order statistics, Journal of Applied Probability & Statistics 1(1) (2006), 115-131.

[19] R. U. Khan and M. A. Khan, Moment properties of generalized order statistics from exponential-Weibull lifetime distribution, Journal of Advanced Statistics 1(3) (2016), 146-155.
DOI: https://dx.doi.org/10.22606/jas.2016.13004

[20] R. U. Khan and B. Zia, Generalized order statistics from doubly truncated linear exponential distribution and a characterization, Journal of Applied Probability & Statistics 9(1) (2014), 53-65.

[21] R. U. Khan, Z. Anwar and H. Athar, Recurrence relations for single and product moments of generalized order statistics from doubly truncated Weibull distribution, Aligarh J. Statist. 27 (2007), 69-79.

[22] D. Kumar, M. Kumar, J. Saran and N. Jain, The Kumaraswamy-Burr III distribution based on upper record values, American Journal of Mathematical and Management Sciences 36(3) (2017), 205-228.
DOI: https://doi.org/10.1080/01966324.2017.1318099

[23] V. K. Rohatgi and A. K. Md. E. Saleh, A class of distributions connected to order statistics with nonintegral sample size, Comm. Statist. Theory Methods 17(6) (1988), 2005-2012.
DOI: https://doi.org/10.1080/03610928808829728

[24] S. M. Stigler, Fractional order statistics, with applications, J. Amer. Statist. Assoc. 72(359) (1977), 544-550.