[1] A. Flair, H. Elsalloukh, E. Mendi and M. Milanova, The
exponentiated inverted Weibull Distribution, Appl. Math. Inf. Sci.
6(2) (2012), 167-171.
[2] G. S. Mudholkar, D. K. Srivastava and M. Freimer, The
exponentiated Weibull family: A reanalysis of the bus-motor failure
data, Technometrics 37(4) (1995), 436-445.
[3] G. S. Mudholkar and A. D. Hutson, Exponentiated Weibull family:
Some properties and flood data application, Commun. Statistical Theory
and Method 25 (1996), 3050-3083.
[4] G. R. Aryal and Ch. P. Tsokos, Transmuted Weibull distribution: A
generalization of the Weibull probability distribution, European J.
Pure and Appl. Math. 4(2) (2011), 89-102.
[5] W. T. Shaw and I. R. Buckley, The alchemy ofprobability
distributions: Beyond Gram-Charlier expansions and a
Skew-Kurtotic-Normal distribution from a rank transmutation map, arXiv
preprint arXiv:0901.0434. (2009).
[6] F. Merovci, Transmuted Rayleigh distribution, Austrian J. Stat.
42(1) (2013), 21-31.
[7] M. S. Khan and R. King, Transmuted modified Weibull distribution:
A generalization of the modified Weibull probability distribution,
European J. Pure and Appl. Math. 6 (2013), 66-88.
[8] S. K. Ashour and M. A. Eltehiwy, Transmuted Lomax distribution,
Amer. J. Appl. Math. Stat. 1(6) (2013), 121-127.
[9] F. Merovci and L. Puka, Transmuted Pareto distribution, ProbStat
Forum 7 (2014), 1-11.
[10] I. Elbatal, L. S. Diab and N. A. Abdul-Alim, Transmuted
generalized linear exponential distribution, Inter. J. Comp. Appl.
83(17) (2013), 29-37.
[11] M. S. Khan, G. R. Pasha and A. H. Pasha, Theoretical analysis of
inverse Weibull distribution, WSEAS Trans. Math. 7(2) (2008).
[12] D. F. Andrews and A. M. Herzberg, Data: A collection of problems
from many fields for the student and research worker, Springer Series
in Statistics, New York, 1985.
[13] R. E. Barlow, R. H. Toland and T. Freeman, A Bayesian analysis of
stress rupture life of Kevlar 49/epoxy (1984).
[14] A. L. Renyi, On measure on entropy and information, In Fourth
Berkeley Symposium on Mathematical Statistics and Probability 1
(1961), 547-561.
[15] R. C. Gupta and R. D. Gupta, Proportional reversed hazard model
and its applications, J. Stat. Plan. Infer. 137(11) (2007),
3525-3536.
[16] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and
Series (1, 2 and 3), Gordon and Breach Science Publishers, Amsterdan,
1986.
[17] A. A. Ogunde, O. Fatoki and O. I. Oseghale, On the application of
transmuted inverted Weibull distribution, Global J. Sci. Fronttier
Research, 17(6), Version 1.0
[18] Abd El Hady Ebraheim, Exponentiated Transmuted Weibull
distribution A generalization of the Weibull distribution, World
Academy of Science, Engineering and Technology, Inter. J. Math. Comp.
Natural and Phys. Engin. 8(6) 2014.