[1] M. Ahsanullah, Record Statistics, Nova Science Publishers, New
York, 1995.
[2] K. N. Chandler, The distribution and frequency of record values,
J. Roy. Statist. Soc. Ser. B 14 (1952), 220-228.
[3] W. Dziubdziela and B. Kopociński, Limiting properties of the
k-th record value, Appl. Math. (Warsaw) 15 (1976), 187-190.
[4] K. Danielak and M. Z. Raqab, Sharp bounds for expectations of
k-th record increments, Aust. N. Z. J. Stat. 46 (2004),
665-673.
[5] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and
Products, Academic Press, New York, 2007.
[6] Z. Grudzień, Characterization of distribution of time limits
in record statistics as well as distributions and moments of linear
record statistics from the samples of random numbers, Praca Doktorska
UMCS Lublin (1982).
[7] Z. Grudzień and D. Szynal, Characterization of continuous
distributions via moments of k-th record values with random
indices, J. Appl. Statist. Sci. 5 (1997), 259-266.
[8] J. S. Hwang and G. D. Lin, On a generalized moments problem II,
Proc. Amer. Math. Soc. 91 (1984), 577-580.
[9] U. Kamps, A Concept of Generalized Order Statistics, B. G. Teubner
Stuttgart, Germany, 1995.
[10] A. H. Khan, R. U. Khan and M. Yaqub, Characterization of
continuous distributions through conditional expectation of function
of generalized order statistics, J. Appl. Probab. Stat. 1 (2006),
115-131.
[11] M. A. Khan and R. U. Khan, k-th upper record values from
modified Weibull distribution and characterization, Int. J. Comp.
Theo. Stat. 3 (2016), 75-80.
[12] R. U. Khan, M. A. Khan and M. A. R. Khan, Relations for moments
of generalized record values from additive Weibull distribution and
associated inference, Stat. Optim. Inf. Comput. 5 (2017), 127-136.
[13] R. U. Khan, A. Kulshrestha and M. A. Khan, Relations for moments
of k-th record values from exponential-Weibull lifetime
distribution and a characterization, J. Egyptian Math. Soc. 23 (2015),
558-562.
[14] S. Minimol and P. Yageen Thomos, On some properties of Makeham
distribution using generalized record values and its characterization,
Braz. J. Probab. Stat. 27 (2013), 487-501.
[15] S. Minimol and P. Yageen Thomos, On characterization of Gompertz
distribution by properties of generalized record values, J. Stat.
Theory Appl. 13 (2014), 38-45.
[16] S. Nasiru and A. Luguterah, The new Weibull-Pareto distribution,
Pak. J. Stat. Oper. Res. 11 (2015), 103-114.
[17] P. Pawlas and D. Szynal, Recurrence relations for single and
product moments of record values from Weibull distributions and a
characterization, J. Appl. Statist. Sci. 10 (2000), 17-26.
[18] P. Pawlas and D. Szynal, Relations for single and product moments
of k-th record values from exponential and Gumble
distributions, J. Appl. Statist. Sci. 7 (1998), 53-62.
[19] P. Pawlas and D. Szynal, Recurrence relations for single and
product moments of record values from Pareto generalized Pareto and
Burr distributions, Comm. Statist. Theory Methods 28 (1999),
1699-1709.