References

EXAMINING THE PROPERTIES OF A SIMPLE ESTIMATOR BASED ON TRANSFORMED CAUCHY VARIABLES


[1] B. Bloch, Note on the estimation of the location parameter of the Cauchy distribution, Journal of the American Statistical Association 61 (1966), 852-855.

[2] A. Cedilnik, K. Košmelj and A. Blejec, The distribution of the ratio of jointly normal variables, Metodološki zvezki 1 (2004), 99-108.

[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (7th edition, edited by A. Jeffrey and D. Zwillinger), Amsterdam: Elsevier/Academic Press, 2007.

[4] L. Hurwicz, Least-squares bias in time series. In: Koopmans TC (ed.), Statistical Inference in Dynamic Models, New York: Wiley (1950), 365-383.

[5] R. Jamnik, Verjetnostni račun, Ljubljana: Mladinska knjiga, 1971.

[6] G. Marsaglia, Ratios of normal variables, Journal of Statistical Software 16 (2006), 1-10.

[7] S. Nadarajah and S. Kotz, A truncated Cauchy distribution, International Journal of Mathematical Education in Science and Technology 37 (2006), 605-608.

[8] R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2017.

[9] E. Reschenhofer, Heteroscedasticity-robust estimation of autocorrelation, Working Paper, 2017a.

[10] E. Reschenhofer, Using ratios of successive returns for the estimation of serial correlation in return series, Working Paper, 2017b.

[11] T. J. Rothenberg, F. M. Fisher and C. B. Tilanus, A note on estimation from a Cauchy sample, Journal of the American Statistical Association 59 (1964), 460-463.

[12] R. Zieliński, A median-unbiased estimator of the AR(1) coefficient, Journal of Time Series Analysis 20 (1999), 477-481.