[1] B. Bloch, Note on the estimation of the location parameter of the
Cauchy distribution, Journal of the American Statistical Association
61 (1966), 852-855.
[2] A. Cedilnik, K. Košmelj and A. Blejec, The distribution of the
ratio of jointly normal variables, Metodološki zvezki 1 (2004),
99-108.
[3] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and
Products (7th edition, edited by A. Jeffrey and D. Zwillinger),
Amsterdam: Elsevier/Academic Press, 2007.
[4] L. Hurwicz, Least-squares bias in time series. In: Koopmans TC
(ed.), Statistical Inference in Dynamic Models, New York: Wiley
(1950), 365-383.
[5] R. Jamnik, Verjetnostni raÄun, Ljubljana: Mladinska knjiga,
1971.
[6] G. Marsaglia, Ratios of normal variables, Journal of Statistical
Software 16 (2006), 1-10.
[7] S. Nadarajah and S. Kotz, A truncated Cauchy distribution,
International Journal of Mathematical Education in Science and
Technology 37 (2006), 605-608.
[8] R Core Team, R: A Language and Environment for Statistical
Computing, Vienna: R Foundation for Statistical Computing, 2017.
[9] E. Reschenhofer, Heteroscedasticity-robust estimation of
autocorrelation, Working Paper, 2017a.
[10] E. Reschenhofer, Using ratios of successive returns for the
estimation of serial correlation in return series, Working Paper,
2017b.
[11] T. J. Rothenberg, F. M. Fisher and C. B. Tilanus, A note on
estimation from a Cauchy sample, Journal of the American Statistical
Association 59 (1964), 460-463.
[12] R. Zieliński, A median-unbiased estimator of the AR(1)
coefficient, Journal of Time Series Analysis 20 (1999), 477-481.