References

PERFORMANCE RATING OF TRANSMUTED NADARAJAH AND HAGHIGHI EXPONENTIAL DISTRIBUTION: AN ANALYTICAL APPROACH


[1] A. Z. Afify, Z. M. Nofal and N. S. Butt, Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Operation Res. 10(4) (2014), 435-454.

[2] A. Ahmad, S. P. Ahmad and A. Ahmed, Transmuted inverse Rayleigh distribution: A generalization of then inverse Rayleigh distribution, Math. Theory Model 4(7) (2014), 90-98; S. K. Ashour and M. A. Eltehiwy, Transmuted Lomax distribution, Am. J. Appl. Math. Stat. 1(6) (2013b), 121-127.

[3] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, European Journal of Pure Applied Mathematics 4 (2011), 89-102.

[4] B. Abdul-Moniem and M. Seham, Exponentiated Nadarajah Haghighi exponential distribution, International Journal of Mathematical Analysis and Applications 2(5) (2015), 68-73.

[5] B. Abdul-Moniem and M. Seham, Transmuted Gompertz distribution, Computational and Applied Mathematics 1(3) (2015), 88-96.

[6] I. Elbatal, Transmuted modified inverse Weibull distribution: A generalization of the modified inverse Weibull probability distribution, Int. J. Math. Arch. 4(8) (2013), 117-129.

[7] I. Elbatal and G. Aryal, On the transmuted additive Weibull distribution, Australian Journal of Statistics 42(2) (2013), 117-132.

[8] Enahoro A. Owoloko, Pelumi E. Oguntunde and Adebowale O. Adejumo, Performance rating of transmuted exponential distribution: An analytical approach, Springer Open Journal 4 (2015), 818. DOI 10.1186/s40064-015-1590-6

[9] Warren Gilchrist, Statistical Modelling with Quantile Functions, CRC Press Inc., 2000.

[10] M. A. Hussian, Transmuted exponentiated gamma distribution: A generalization of the exponentiated gamma probability distribution, Appl. Math. Sci. 8(27) (2014), 1297-1310.

[11] M. S. Khan and R. King, Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, European Journal of Pure and Applied Mathematics 6 (2013), 66-88.

[12] M. S. Khan, R. King and I. Hudson, Characteristics of the transmuted inverse Weibull distribution, ANZIAM J. 55 (EMAC2013) (2014), C197-C217.

[13] M. S. Khan and R. King, Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, European Journal of Pure and Applied Mathematics 6(1) (2013a), 66-88.

[14] M. S. Khan and R. King, Transmuted generalized inverse Weibull distribution, Journal of Applied Statistical Sciences 20(3) (2013b), 15-32.

[15] M. S. Khan, R. King and I. Hudson, Transmuted generalized exponential distribution: A generalization of the exponential distribution with applications to survival data, Communications in Statistics: Simulation and Computation, to appear, 2015a.

[16] M. S. Khan, R. King and I. Hudson, Transmuted Weibull distribution Properties and Estimation. Communications in Statistics: Theory and Methods 46(11) (2017), 5394-5418.

[17] M. S. Khan, R. King and I. Hudson, Transmuted Generalized Gompertz distribution: Properties and Estimation, Pakistan Journal of Statistics 32(3), (2016), 161-182

[18] F. Merovci and I. Puka, Transmuted Pareto distribution, Probability Statistical Forum 07 (2014), 1-11.

[19] P. E. Oguntunde and A. O. Adejumo, The transmuted inverse exponential distribution, International Journal Advance Statistics and Probability 3(1) (2015), 1-7.

[20] W. T. Shaw and I. R. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew kurtotic normal distribution from a rank transmutation map, Research Report, 2007.

[21] W. T. Shaw and I. R. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map, 2009. arXiv preprint arXiv:0901.0434.