[1] H. Akaike, An approximation to the density function, Ann. Inst.
Statist. Math. Tokyo 6 (1954), 127-132.
[2] S. Bouzebda and I. Elhattab, Uniform-in-bandwidth consistency for
kernel-type estimators of Shannon’s entropy, Electronic Journal
of Statistics 5 (2011), 440-459.
[3] D. Bosq and J. P. Lecoutre, Théorie de l\\\'estimation
fonctionnelle, Économie et Statistiques Avancées, Economica,
Paris, 1987.
[4] J. Burbea and C. R. Rao, On the convexity of divergence measures
based on entropy functions, IEEE Trans. Inform. Theory 28 (1982a),
489-495.
[5] J. Burbea and C. R. Rao, On the convexity of higher order
Jensen differences based on entropy functions, IEEE Trans. Inform.
Theory 28 (1982b), 961-963.
[6] J. Burbea and C. R. Rao, Entropy differential metric distance and
divergence measures in probability spaces: A unified approach, J.
Multivariate Anal. 12 (1982c), 575-596.
[7] I. Csiszr, Information-type measures of differences of probability
distributions and indirect observations, Studia Sci. Math. Hungarica 2
(1967), 299-318.
[8] P. Deheuvels, Uniform limit laws for kernel density estimators on
possibly unbounded intervals, Stat. Ind. Technol. (2000), 477-492.
[9] P. Deheuvels and J. Einmahl, On the strong limiting behavior of
local functionals of empirical processes based upon censored data,
Ann. Prob. 24 (1996), 504-525.
[10] P. Deheuvels and D. M. Mason, General asymptotic confidence bands
based on kernel-type function estimators, Stat. Inference Stoch.
Process 7 (2004), 225-277.
[11] L. Devroye and L. Gyorfi, Nonparametric Density Estimation, Wiley
Series in Probability and Mathematical Statistics: Tracts on
Probability and Statistics, John Wiley & Sons Inc., New York, The L1
View, 1985.
[12] L. Devroye and G. Lugosi, Combinatorial Methods in density
Estimation, Springer Series in Statistics, Springer-Verlag, New York,
2001.
[13] H. Dhaker, P. Ngom, P. Mendy and E. Deme, Uniform-in-bandwidth
consistency for nonparametric estimation of divergence measures,
arXiv:1406.6017.
[14] U. Einmahl and D. M. Mason, An empirical process approach to the
uniform consistency of kernel-type function estimators, J. Theoret.
Probab. 13 (2000), 1-37.
[15] H. Jeffreys, An invariant form for the prior probability in
estimation problems, Proceedings of the Royal Society of London,
Series A, Mathematical and Physical Sciences 186(1007) (1946),
453-461.
[16] S. Kullback and R. A. Leibler, On information and sufficiency,
The Annals of Mathematical Statistics 22 (1951), 79-86.
[17] A. Lynda and F. Hocine, On the stability of the unit root test,
Journal Afrika Statistika 5 (2010), 228-237.
[18] J. Marriott and P. Newbold, Bayesian comparison of ARIMA and
stationary ARMA models, International Statistical Review 3 (1998),
323-336.
[19] M. L. Menendez, D. Morales, L. Pardo and I. Vajda, Divergence
based estimation and testing of statistical models of classification,
J. Multivariate Anal. 54 (1995), 329-354.
[20] D. B. Owen, Statistical Inference Based on Divergence Measures,
Taylor & Francis Group, LLC, 2006.
[21] E. Parzen, On estimation of a probability density function and
mode, Ann. Math. Statist. 33 (1962), 1065-1076.
[22] B. Póczos and J. Schneider, On the estimation of
alpha-divergences, CMU, Auton Lab Technical Report.
http://www.cs.cmu.edu/bapoczos/articles/poczos11alphaTR.pdf
[23] B. L. S. Prakasa Rao, Nonparametric Functional Estimation,
Probability and Mathematical Statistics, Academic Press Inc. [Harcourt
Brace Jovanovich Publishers], New York, 1983.
[24] A. Rényi, On measures of entropy and information, In Fourth
Berkeley Symposium on Mathematical Statistics and Probability,
1961.
[25] B. D. Sharma and D. P. Mittal, New non-additive measures of
relative information, Journ. Comb. Inf. Syst. Sci. 2 (1977),
122-132.
[26] M. Rosenblatt, Remarks on some nonparametric estimates of a
density function, Ann. Math. Statist. 27 (1956), 832-837.
[27] I. J. Taneja, On Generalized Information Measures and their
Applications, Chapter in: Advances in Electronics and Electon Physics,
Editor P. W. Hawkes 76 (1989), 327-413.