References

OMITTED VARIABLES, AND BIAS REDUCTION IN MATCHING HIERARCHICAL DATA: A MONTE CARLO STUDY


[1] A. Abadie and G. W. Imbens, Large sample properties of matching estimators for average treatment effects, Econometrica 74(1) (2006), 235-267.

[2] A. Abadie and G. W. Imbens, Bias corrected matching estimators for average treatment effects, (2007).

http://ksghome.harvard.edu/aabadie/research.html

[3] J. D. Angrist and J. S. Pischke, Mostly Harmless Econometrics: An Empiricist’s Companion, New Jersey: Princeton University Press, 2009.

[4] P. C. Austin, P. Grootendorst and G. M. Anderson, A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study, Statistics in Medicine 26(4) (2007), 734-753.

[5] P. C. Austin, Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies, Pharmaceutical Statistics 10(2) (2011), 150-161.

[6] P. C. Austin, A comparison of 12 algorithms for matching on the propensity score, Statistics in Medicine 33(6) (2014), 1057-1069.

[7] J. Bafumi and A. Gelman, Fitting multilevel models when predictors and group effects correlate, Paper presented at the 2006 Annual Meeting of the Midwest Political Science Association, Chicago, IL, 2006. Retrieved from:

http://www.stat.columbia.edu/~gelman/research/unpub lished/Bafumi_Gelman_Midwest06.pdf

[8] M. D. Bates, K. E. Castellano, S. Rabe-Hesketh and A. Skrondal, Handling correlations between covariates and random slopes in multilevel models, Journal of Educational and Behavioral Statistics 39(6) (2014), 524-549.

[9] A. Bell and K. Jones, Explaining fixed effects: Random effects modeling of time-series cross-sectional and panel data, Political Science Research and Methods 3(1) (2015), 133-153.

[10] M. T. Berg, E. A. Stewart, E. Stewart and R. L. Simons, A multilevel examination of neighborhood social processes and college enrollment, Social Problems 60(4) (2013), 513-534.

[11] K. A. Bollen, Structural Equations with Latent Variables, Willey, New York, 1989.

[12] D. T. Campbell and J. C. Stanley, Experimental and Quasi-experimental Designs for Research, Rand McNally College Publishing, Chicago, 1966.

[13] G. Chamberlain, Omitted variable bias in panel data: Estimating the returns to schooling, In Annales de \\\\\\\\\\\\\\\'INSEE (pp. 49-82). Institut national de la statistique et des études économiques, 1978.

[14] Y. Chung, S. Rabe-Hesketh, V. Dorie, A. Gelman and J. Liu, A non-degenerate penalized likelihood estimator for variance parameters in multilevel models, Psychometrika 78(4) (2013), 685-709.

[15] W. G. Cochran, Matching in analytical studies, American Journal of Public Health 43 (1953), 684-691.

[16] W. G. Cochran, Analysis of covariance: Its nature and uses, Biometrics 13(3) (1957), 261-281.

[17] W. G. Cochran, The effectiveness of adjustment by sub-classification in removing bias in observational studies, Biometrics 24(2) (1968), 295-313.

[18] W. G. Cochran, The use of covariance in observational studies, Applied Statistics 18(3) (1969), 270-275.

[19] W. G. Cochran, Observational studies. In T. A. Bancroft (Ed.), Statistical papers in honor of George W. Snedecor (p. 71-90). Ames: Iowa State University Press, 1972.

[20] W. G. Cochran, The planning of observational studies of human populations (with discussion), Journal of the Royal Statistical Society, Series A (General) 128(2) (1965), 234-255.

[21] W. G. Cochran and D. B. Rubin, Controlling bias in observational studies: A review, Sankhy: The Indian Journal of Statistics, Series A 35 (1973), 417-446.

[22] P. Ebbes, U. Bockenholt, M. Wedel and H. Nam, Accounting for regressor-error dependencies in educational data: A Bayesian mixture approach (Robert H. Smith School Research Paper No. RHS, 2466533), (2014). Retrieved from:

http://papers.ssrn.com/sol3/papers.cfm?abstract_id= 2466533

[23] M. Fairbrother, Two multilevel modeling techniques for analyzing comparative longitudinal survey datasets, Political Science Research and Methods 2(01) (2014), 119-140.

[24] S. Greenland, An overview of methods for causal inference from observational studies, In A. Gelman&X., 2004.

[25] L. Meng (Eds.), Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, (pp. 3-14) Willey, New York, 2004.

[26] Z. Griliches and W. M. Mason, Education, income, and ability, The Journal of Political Economy 80(3) (1972), S74-S103.

[27] L. V. Hedges and E. C. Hedberg, Intraclass correlation values for planning group randomized trials in education, Educational Evaluation and Policy Analysis 29(1) (2007), 60.

[28] L. V. Hedges, Correcting a significance test for clustering, Journal of Educational and Behavioral Statistics 32(2) (2007), 151-179.

[29] N. E. Helwig and C. J. Anderson, Book review, [Review of the book Handbook of Advanced Multilevel Analysis, by J. J. Hox & J. K. Roberts]. Psychometrika 79(1) (2014), 175-177.

[30] D. E. Ho, K. Imai, G. King and E. A. Stuart, MatchIt: Nonparametric preprocessing for parametric causal inference (version 2.211) [software], Journal of Statistical Software 42(8) (2011).

Available at: http://imai.princeton.edu/research/les/matchit.pdf

[31] G. Hong and S. W. Raudenbush, Evaluating kindergarten retention policy, Journal of the American Statistical Association 101(475) (2006), 901-910.

[32] D. G. Horvitz and D. J. Thompson, A generalization of sampling without replacement from a finite universe, Journal of the American Statistical Association 47(260) (1952), 663-685.

[33] K. Imai, L. Keele and D. Tingley, A general approach to causal mediation analysis, Psychological Methods 15(4) (2010), 309-334.

[34] K. Imai, L. Keele and T. Yamamoto, Identification, inference and sensitivity analysis for causal mediation effects, Statistical Science 25 (1) (2010), 51-71.

[35] International Association for the Evaluation of Educational Achievement, The Second International Mathematics Study, Amsterdam, Netherlands, 1977. Retrieved from

http://www.iea.nl/sims.html

[36] K. G. Jöreskog and D. Sörbom, LISREL8: User’s Reference Guide, Lincoln Wood, Illinois: Scientific Software International, 1996.

[37] J. D. Y. Kang and J. L. Schafer, Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data, Statistical Science 22(4) (2007), 523-539.

[38] D. A. Kenny, J. D. Korchmaros and N. Bolger, Lower level mediation in multilevel models, Psychological Methods 8 (2003), 115-128.

DOI:10.1037/1082-989X.8.2.115

[39] J. S. Kim and E. W. Frees, Omitted variables in multilevel models, Psychometrika 71(4) (2006), 659-690.

[40] D. M. LaHuis, M. J. Hartman, S. Hakoyama and P. C. Clark, Explained variance measures for multilevel models, Organizational Research Methods 17(4) (2014), 433-451.

[41] G. Leckie, Book review. [Review of the book Handbook of Advanced Multilevel Analysis, by J. J. Hox & J. K. Roberts], Journal of the Royal Statistical Society: Series A (Statistics in Society) 174(3) (2011), 844-845.

[42] G. Leckie, R. French, C. Charlton and W. Browne, Modeling heterogeneous variance-covariance components in two-level models, Journal of Educational and Behavioral Statistics 39(5) (2014), 307-332.

[43] M. Lunt, Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching, American Journal of Epidemiology 179(2) (2014), 226-235.

[44] R. C. MacCallum, M. Roznowski and L. B. Necowitz, Model modifications in covariance structure analysis: The problem of capitalization on chance, Psychological Bulletin 111(3) (1992), 490-504.

[45] D. C. Martin, P. Diehr, E. B. Perrin and T. D. Koepsell, The effect of matching on the power of randomized community intervention studies, Statistics in Medicine 12(3-4) (1993), 329-338.

[46] D. McCaffrey and L. Hamilton, Value-Added Assessment in Practice: Lessons from the Pennsylvania Value-Added Assessment System Pilot Project, Santa Monica, CA: Rand Corporation, 2007.

[47] B. O. Muthén, Multi level covariance structure analysis, Sociological Methods & Research 22(3) (1994), 376-398.

[48] L. K. Muthén and B. O. Muthén, Mplus User’s Guide, Los Angeles: Muthén & Muthén, 1998-2012.

[49] J. Neyman, On the application of probability theory to agricultural experiments: Essay on principles, section 9, (translated in 1990), Statistical Science, 5 (1923), 465-480.

[50] A. Pokropek, Phantom effects in multilevel compositional analysis problems and solutions, Sociological Methods & Research 44 (2015), 677-705.

DOI: 10.1177/0049124114553801

[51] K. J. Preacher, Advances in mediation analysis: A survey and synthesis of new developments, Annual Review of Psychology 66 (2015), 825-852.

[52] R Development Core Team. R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, Vienna, Austria, 2007. Retrieved from

http://www.R-project.org

[53] G. M. Raab and I. Butcher, Balance in cluster randomized trials, Statistics in Medicine 20(3) (2001), 351-365.

[54] T. Raykov, T. Patelis, G. A. Marcoulides and C. L. Lee, Examining intermediate omitted levels in hierarchical designs via latent variable modeling, Structural Equation Modeling: A Multidisciplinary Journal, (ahead-of-print), (2015) 1-5. Derived from

http://dx.doi.org/10.1080/10705511.2014.938186

[55] S. W. Raudenbush, Statistical analysis and optimal design for cluster randomized trials, Psychological Methods 2(2) (1997), 173-185.

[56] S. W. Raudenbush and A. S. Bryk, Hierarchical Linear Models: Applications and Data Analysis Methods, Thousand Oaks, CA: Sage, 2002.

[57] P. R. Rosenbaum, Observational Study, Springer-Verlag, New York, 2002.

[58] P. R. Rosenbaum and D. B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika 70(1) (1983), 41-55.

[59] P. R. Rosenbaum and D. B. Rubin, Constructing a control group using multivariate matched sampling methods that incorporate the propensity score, American Statistician 39(1) (1985), 33-38.

[60] D. B. Rubin, Matching to remove bias in observational studies, Biometrics 29(1) (1973a), 159-183.

[61] D. B. Rubin, The use of matched sampling and regression adjustment to remove bias in observational studies, Biometrics 29(1) (1973b), 185-203.

[62] D. B. Rubin, Multi variate matching methods that are equal percent bias reducing, II: Maximum son bias reduction for fixed sample sizes, Biometrics 32(1) (1976a), 121-132.

[63] D. B. Rubin, Multivariate matching methods that are equal percent bias reducing, I: Some examples, Biometrics 32(1) (1976b), 109-120.

[64] D. B. Rubin, Using multivariate matched sampling and regression adjustment to control bias in observational studies, Journal of the American Statistical Association 74(366) (1979), 318-328.
[65] D. B. Rubin, Bias reduction using Mahalanobis-metric
matching, Biometrics 36(2) (1980), 293-298.

[66] D. B. Rubin, The use of propensity scores in applied Bayesian inference, Bayesian Statistics 2 (1985), 463-472.

[67] D. B. Rubin, Formal modes of statistical inference for causal effects, Journal of Statistical Planning and Inference 25(3) (1990), 279-292.

[68] D. B. Rubin, Matched Sampling for Causal Effects, Cambridge University Press, New York, 2006.

[69] D. B. Rubin and R. P. Waterman, Estimating the causal effects of marketing interventions using propensity score methodology, Statistical Science 21(2) (2006), 206-222.

[70] W. H. Schmidt and L. Burstein, Concomitants of growth in mathematics achievement during the population a school year, In L. Burstein (Ed.), The IEA Study of Mathematics III: Student growth and classroom processes (pp. 309-327), Pergamon Press, Oxford, UK, 1992.

[71] J. S. Sekhon, Multivariate and propensity score matching software with automated balance optimization: The matching package for R, Journal of Statistical Software 10(2) (2007), 1-51.

[72] J. S. Sekhon and A. Diamond, Genetic matching for estimating causal effects: A general multivariate matching method for achieving balance in observational studies, (2008). Retrieved July 18, 2009, from

http://sekhon.berkeley.edu/papers/GenMatch.pdf

[73] E. Schlueter, B. Meuleman and E. Davidov, Immigrant integration policies and perceived group threat: A multilevel study of 27 Western and Eastern European countries, Social Science Research 42(3) (2013), 670-682.

[74] W. R. Shadish, T. D. Cook and D. T. Campbell, Experimental and Quasi-Experimental Design for Generalized Causal Inference, Boston: Houghton-Mifflin, 2002.

[75] R. L. Solomon, An extension of control group design, Psychological Bulletin 46(2) (1949), 137-150.

[76] S. Sun and W. Pan, Investigating the accuracy of three estimation methods for regression discontinuity design, The Journal of Experimental Education 81(1) (2013), 1-21.

[77] E. A. Stuart and D. B. Rubin, Matching with multiple control groups with adjustment for group differences, Journal of Educational and Behavioral Statistics 33(3) (2008), 279-306.

[78] I. Televantou, H. W. Marsh, L. Kyriakides, B. Nagengast, J. Fletcher and L. E. Malmberg, Phantom effects in school composition research: Consequences of failure to control biases due to measurement error in traditional multilevel models, School Effectiveness and School Improvement 26(1) (2015), 75-101.

[79] D. Tofighi and F. Thoemmes, Single-level and multilevel mediation analysis, The Journal of Early Adolescence 34(1) (2014), 93-119.

[80] D. Tofighi, S. G. West and D. P. MacKinnon, Multilevel mediation analysis: The effects of omitted variables in the 1-1-1 model, British Journal of Mathematical and Statistical Psychology 66(2) (2013), 290-307.

[81] Q. Wang, Propensity Score Matching on Multilevel Data, In W. Pan and H. Bai (Eds.), Propensity Score Analysis: Fundamentals and Developments, Guilford, New York, NY, 2015.

[82] Q. Wang, Matching for Bias Reduction in Treatment Effect Estimation of Hierarchically Structured Synthetic Cohort Design Data, Unpublished Doctoral Dissertation, Michigan State University, East Lansing, MI, 2010.

[83] D. E. Wiley and R. G. Wolfe, Major survey design issues for the IEA third international mathematics and science study, Prospects 22(3) (1992), 297-304.

[84] R. G. Wolfe, Second international mathematics study: Training manual for use of the databank of the longitudinal, classroom process surveys for population a in the IEA second international mathematics study, (Contractor’s Report), Washington, DC: Center for Education Statistics, 1987.

[85] J. M. Wooldridge, Econometric Analysis of Cross-section and Panel Data, Cambridge, Massachusett: MIT Press, 2002.

[86] S. Wu, Y. Ding, F. Wu, J. Hou and P. Mao, Application of propensity-score matching in four leading medical journals, Epidemiology 26(2) (2015), e19-e20.