References

ON DECOMPOSITION OF POINT-SYMMETRY FOR SQUARE CONTINGENCY TABLES WITH ORDERED CATEGORIES


[1] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge, Massachusetts, 1975.

[2] A. H. Bowker, A test for symmetry in contingency tables, Journal of the American Statistical Assosiation 43 (1948), 572-574.

[3] H. Caussinus, Contribution à l’analyse statistique des tableaux de correlation, Annales de la Faculté des Sciences de l’Université de Toulouse, 29 (1965), 77-182.

[4] D. H. Freeman, The analysis of twice classified data, American Statistical Association: Proceedings of the Social Statistics Section (1981), 178-182.

[5] P. McCullagh, A class of parametric models for the analysis of square contingency tables with ordered categories, Biometrika 65 (1978), 413-418.

[6] E. L. Mullins and P. Sites, The origins of contemporary eminent black Americans: A three generations analysis of social origin, American Sociological Review 49 (1984), 672-685.

[7] C. B. Read, Partitioning chi-square in contingency tables: A teaching approach, Communications in Statistics-Theory and Method 6 (1977), 553-562.

[8] K. Tahata and S. Tomizawa, Orthogonal decompositions of point-symmetry for multiway tables, Advances in Statistical Analysis 92 (2008), 255-269.

[9] S. Tomizawa, The decompositions for point-symmetry in two-way contingency tables, Biometrical Journal 27 (1985), 895-905.

[10] S. Tomizawa, Four kinds of symmetry models and their decompositions in a square contingency table with ordered categories, Biometrica Journal 28 (1986), 387-393.

[11] K. D. Wall and G. A. Lienert, A test of point-symmetry in J-dimensional contingency tables, Biometrical Journal 18 (1976), 259-264.