[1] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice, The MIT Press, Cambridge,
Massachusetts, 1975.
[2] A. H. Bowker, A test for symmetry in contingency tables, Journal
of the American Statistical Assosiation 43 (1948), 572-574.
[3] H. Caussinus, Contribution à l’analyse statistique des
tableaux de correlation, Annales de la Faculté des Sciences de
l’Université de Toulouse, 29 (1965), 77-182.
[4] D. H. Freeman, The analysis of twice classified data, American
Statistical Association: Proceedings of the Social Statistics Section
(1981), 178-182.
[5] P. McCullagh, A class of parametric models for the analysis of
square contingency tables with ordered categories, Biometrika 65
(1978), 413-418.
[6] E. L. Mullins and P. Sites, The origins of contemporary eminent
black Americans: A three generations analysis of social origin,
American Sociological Review 49 (1984), 672-685.
[7] C. B. Read, Partitioning chi-square in contingency tables: A
teaching approach, Communications in Statistics-Theory and Method 6
(1977), 553-562.
[8] K. Tahata and S. Tomizawa, Orthogonal decompositions of
point-symmetry for multiway tables, Advances in Statistical Analysis
92 (2008), 255-269.
[9] S. Tomizawa, The decompositions for point-symmetry in two-way
contingency tables, Biometrical Journal 27 (1985), 895-905.
[10] S. Tomizawa, Four kinds of symmetry models and their
decompositions in a square contingency table with ordered categories,
Biometrica Journal 28 (1986), 387-393.
[11] K. D. Wall and G. A. Lienert, A test of point-symmetry in
J-dimensional contingency tables, Biometrical Journal 18 (1976),
259-264.