[1] O. A. Awosoga, Meta Analyses of Multiple Baseline Time Series
Design Intervention Models for Dependent and Independent Series,
Unpublished PhD Dissertation, Western Michigan University, 2009.
[2] L. V. Hedges and I. Olkin, Nonparametric estimators of effect size
in meta-analysis, Psychological Bulletin 96 (1984), 573-580.
[3] T. P. Hettmansperger and J. W. McKean, Robust Nonparametric
Statistical Methods, Kendalls Library of Statistics 5, Great Britain,
Arnold, 1998.
[4] T. P. Hettmansperger, J. W. McKean and S. J. Sheather, Robust
nonparametric methods, Journal of the American Statistical Association
95 (2000), 1308-1312.
[5] B. E. Huitema, Anaysis of interrupted time-series experiments
using ITSE: A critique, Understanding Statistics: Statistical Issues
in Psychology, Education, & the Social Sciences 3 (2004b), 27-46.
[6] B. E. Huitema and J. W. McKean, Irrelevant autocorrelation in
least-squares intervention models, Psychological Methods 3 (1998),
104-116.
[7] B. E. Huitema and J. W. McKean, Design specification issues in
time-series intervention models, Education & Psychological Measurement
60 (2000a), 38-58.
[8] B. E. Huitema and J. W. McKean, A simple and powerful test for
autocorrelated errors in OLS intervention models, Psychological
Reports 87 (2000b), 3-20.
[9] B. E. Huitema, J. W. McKean and S. Laraway, Time-series
intervention analysis using ITSACORR: Fatal Flaws, Journal of Modern
Applied Statistical Methods (JMASM) 6(2) (2007), 367-379.
[10] D. Kahner, C. Moler and S. Nash, Numerical Methods and Software,
Englewood Cliffs, NJ: Prentice Hall, 1988.
[11] A. E. Kazdin, Single - Case Research Designs, Methods for
Clinical and Applied Settings, Oxford University Press, Inc., pp.
126-151, 1982.
[12] M. J. Koehler and J. R. Levin, RegRand: Statistical software for
the multiple- baseline design, Behavior Research Methods, Instruments
& Computers 32(2) (2000), 367-371.
[13] J. D. Kloke, J. W. McKean and M. M. Rasid, Rank -based estimation
and associated inferences for linear models with clustered correlated
errors, Journal of the American Statistical Association 104(485)
(2009), 384-390.
[14] G. Marsaglia and T. A. Bray, A convenient method for generating
normal variables, Society of Industrial and Applied Mathematics 6(3)
(1986), 260-264.
[15] J. W. McKean, Robust analyses of linear models, Journal of
Statistical Science 19(4) (2004), 562-570.
[16] Y. Sakamoto, M. Ishiguro and G. Kitagawa, Akaike Information
Criterion Statistics, D. Reidel Publishing Company, Dordrecht/Tokyo,
1986.
[17] G. Schwarz, Estimating the dimension of a model, The Annals of
Statistics 6(2) (1978), 461-464. Published by: Institute of
Mathematical Statistics.
[18] W. R. Shadish, T. D. Cook and D. T. Campbell, Experimental and
Quasi Experimental Designs for Generalized Causal Inference, Boston:
Houghton-Mifflin, 2002.
[19] J. T. Terpstra and J. W. McKean, Rank-based analyses of linear
models using R, Journal of Statistical Software 14(7) (2005).
[20] F. M. Wolf, Meta-Analysis: Quantitative Methods for Research
Synthesis, (Quantitative Applications in the Social Sciences 59) SAGE
Publications, Inc. Beverly Hills, California, 1986.