References

META ANALYSES OF CORRELATED MULTIPLE BASELINE TIME SERIES DESIGN INTERVENTION MODELS USING JR ESTIMATE


[1] O. A. Awosoga, Meta Analyses of Multiple Baseline Time Series Design Intervention Models for Dependent and Independent Series, Unpublished PhD Dissertation, Western Michigan University, 2009.

[2] L. V. Hedges and I. Olkin, Nonparametric estimators of effect size in meta-analysis, Psychological Bulletin 96 (1984), 573-580.

[3] T. P. Hettmansperger and J. W. McKean, Robust Nonparametric Statistical Methods, Kendalls Library of Statistics 5, Great Britain, Arnold, 1998.

[4] T. P. Hettmansperger, J. W. McKean and S. J. Sheather, Robust nonparametric methods, Journal of the American Statistical Association 95 (2000), 1308-1312.

[5] B. E. Huitema, Anaysis of interrupted time-series experiments using ITSE: A critique, Understanding Statistics: Statistical Issues in Psychology, Education, & the Social Sciences 3 (2004b), 27-46.

[6] B. E. Huitema and J. W. McKean, Irrelevant autocorrelation in least-squares intervention models, Psychological Methods 3 (1998), 104-116.

[7] B. E. Huitema and J. W. McKean, Design specification issues in time-series intervention models, Education & Psychological Measurement 60 (2000a), 38-58.

[8] B. E. Huitema and J. W. McKean, A simple and powerful test for autocorrelated errors in OLS intervention models, Psychological Reports 87 (2000b), 3-20.

[9] B. E. Huitema, J. W. McKean and S. Laraway, Time-series intervention analysis using ITSACORR: Fatal Flaws, Journal of Modern Applied Statistical Methods (JMASM) 6(2) (2007), 367-379.

[10] D. Kahner, C. Moler and S. Nash, Numerical Methods and Software, Englewood Cliffs, NJ: Prentice Hall, 1988.

[11] A. E. Kazdin, Single - Case Research Designs, Methods for Clinical and Applied Settings, Oxford University Press, Inc., pp. 126-151, 1982.

[12] M. J. Koehler and J. R. Levin, RegRand: Statistical software for the multiple- baseline design, Behavior Research Methods, Instruments & Computers 32(2) (2000), 367-371.

[13] J. D. Kloke, J. W. McKean and M. M. Rasid, Rank -based estimation and associated inferences for linear models with clustered correlated errors, Journal of the American Statistical Association 104(485) (2009), 384-390.

[14] G. Marsaglia and T. A. Bray, A convenient method for generating normal variables, Society of Industrial and Applied Mathematics 6(3) (1986), 260-264.

[15] J. W. McKean, Robust analyses of linear models, Journal of Statistical Science 19(4) (2004), 562-570.

[16] Y. Sakamoto, M. Ishiguro and G. Kitagawa, Akaike Information Criterion Statistics, D. Reidel Publishing Company, Dordrecht/Tokyo, 1986.

[17] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6(2) (1978), 461-464. Published by: Institute of Mathematical Statistics.

[18] W. R. Shadish, T. D. Cook and D. T. Campbell, Experimental and Quasi Experimental Designs for Generalized Causal Inference, Boston: Houghton-Mifflin, 2002.

[19] J. T. Terpstra and J. W. McKean, Rank-based analyses of linear models using R, Journal of Statistical Software 14(7) (2005).

[20] F. M. Wolf, Meta-Analysis: Quantitative Methods for Research Synthesis, (Quantitative Applications in the Social Sciences 59) SAGE Publications, Inc. Beverly Hills, California, 1986.