References

GENERATIVE MECHANISMS OF A SURVIVAL TIME: THE CASE OF THE INVERSE WEIBULL MODEL


[1] O. O. Aalen, Modelling heterogeneity in survival analysis by the compound Poisson distribution, The Annals of Applied Probability 2 (1992), 951-972.

[2] T. W. Anderson and D. A. Darling, A test of goodness-of-fit, Journal of the American Statistical Association 49 (1954), 765-769.

[3] R. D. Baker, Data-based modeling of the failure rate of repairable equipment, Lifetime Data Anal. 7 (2001), 65-83.

[4] F. Ballani, D. Stoyan and S. Wolf, On two damage accumulation models and their size effects, Journal of Applied Probability 44 (2007), 99-114.

[5] L. Bian and N. Gebraeel, Computing and updating the first-passage time distribution for randomly evolving degradation signals, IIE Transactions 44 (2012), 974-987.

[6] W. H. Carter, G. L. Wampler and D. M. Stablein, Regression Analysis of Survival Data in Cancer Chemotherapy, Marcel Dekker, New York, 1983.

[7] A. Drapella, Complementary Weibull distribution: Unknown or just forgotten, Quality and Reliability Engineering International 9 (1993), 383-385.

[8] N. Ebrahimi, Estimation of two ordered mean residual lifetime functions, Biometrics 49 (1993), 409-417.

[9] N. Z. Gebraeel, M. A. Lawley, R. Li and J. K. Ryan, Residual-life distributions from component degradation signals: A Bayesian approach, IIE Transactions 37 (2007), 543-557.

[10] R. E. Glaser, Bathtub and related failure rate characterizations, Journal of the American Statistical Association 75 (1980), 667-672.

[11] A. G. Glen, On the inverse gamma as survival distribution, Journal of Quality Technology 43 (2011), 158-166.

[12] A. G. Glen and L. Leemis, The arctangent survival distribution, Journal of Quality Technology 29 (1997), 205-210.

[13] C. N. Haas, Importance of distributional form in characterizing inputs to Monte Carlo risk assessments, Risk Analysis 17 (1997), 107-113.

[14] D. G. Harlow, Applications of the Fréchet distribution function, Int. Journal of Materials and Product Technology 17 (2002), 482-495.

[15] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 1, Wiley, New York, 1994.

[16] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, Vol. 2, Wiley, New York, 1995.

[17] C. D. Lai and M. Xie, Stochastic Ageing and Dependence for Reliability, Springer-Verlag, New York, 2006.

[18] J. F. Lawless, Statistical Models and Methods for Lifetime Data, Wiley, New York, 1982.

[19] L. Le Cam and J. Neyman, Probability Models and Cancer, North-Holland, Amsterdam, 1982.

[20] E. T. Lee, Statistical Methods for Survival Data Analysis, 2nd Edition, Wiley, New Jersey, 1992.

[21] M. Y. Lee and J. Tang, A modified em-algorithm for estimating the parameters of inverse Gaussian distribution based on time-censored Wiener degradation data, Statistica Sinica 17 (2007), 873-893.

[22] C. J. Lu and W. Q. Meeker, Using degradation measures to estimate a time-to failure distribution, Technometrics 35 (1993), 161-174.

[23] G. S. Mudholkar and G. D. Kollia, Generalized Weibull family: A structural analysis, Communications in Statistics – Theory and Methods 23 (1994), 1149-1171.

[24] D. N. P. Murthy, M. Xie and R. Jiang, Weibull Models, Wiley, Hoboken, New Jersey, 2004.

[25] S. S. Olin, D. A. Neumann, J. A. Foran and G. J. Scarano, Topics in cancer risk assessment, Environmental Health Perspectives 105 (1997), 117-126.

[26] E. V. Slud and J. Suntornchost, Parametric survival densities from phase-type models, Lifetime Data Anal. 20 (2014), 459-480.

[27] M. A. Stephens, Edf statistics for goodness of fit and some comparisons, Journal of the American Statistical Association 69 (1974), 730-737.

[28] E. Vargo, R. Pasupathy and L. M. Leemis, Moment-ratio diagrams for univariate distributions, Journal of Quality Technology 42 (2010), 276-286.

[29] P. Vilmos and E. Kurucz, Insect immunity: Evolutionary roots of the mammalian innate immune system, Immunology Letters 62 (1998), 59-66.