[1] O. O. Aalen, Modelling heterogeneity in survival analysis by the
compound Poisson distribution, The Annals of Applied Probability 2
(1992), 951-972.
[2] T. W. Anderson and D. A. Darling, A test of goodness-of-fit,
Journal of the American Statistical Association 49 (1954), 765-769.
[3] R. D. Baker, Data-based modeling of the failure rate of repairable
equipment, Lifetime Data Anal. 7 (2001), 65-83.
[4] F. Ballani, D. Stoyan and S. Wolf, On two damage accumulation
models and their size effects, Journal of Applied Probability 44
(2007), 99-114.
[5] L. Bian and N. Gebraeel, Computing and updating the first-passage
time distribution for randomly evolving degradation signals, IIE
Transactions 44 (2012), 974-987.
[6] W. H. Carter, G. L. Wampler and D. M. Stablein, Regression
Analysis of Survival Data in Cancer Chemotherapy, Marcel Dekker, New
York, 1983.
[7] A. Drapella, Complementary Weibull distribution: Unknown or just
forgotten, Quality and Reliability Engineering International 9 (1993),
383-385.
[8] N. Ebrahimi, Estimation of two ordered mean residual lifetime
functions, Biometrics 49 (1993), 409-417.
[9] N. Z. Gebraeel, M. A. Lawley, R. Li and J. K. Ryan, Residual-life
distributions from component degradation signals: A Bayesian approach,
IIE Transactions 37 (2007), 543-557.
[10] R. E. Glaser, Bathtub and related failure rate characterizations,
Journal of the American Statistical Association 75 (1980), 667-672.
[11] A. G. Glen, On the inverse gamma as survival distribution,
Journal of Quality Technology 43 (2011), 158-166.
[12] A. G. Glen and L. Leemis, The arctangent survival distribution,
Journal of Quality Technology 29 (1997), 205-210.
[13] C. N. Haas, Importance of distributional form in characterizing
inputs to Monte Carlo risk assessments, Risk Analysis 17 (1997),
107-113.
[14] D. G. Harlow, Applications of the Fréchet distribution
function, Int. Journal of Materials and Product Technology 17 (2002),
482-495.
[15] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate
Distributions, Vol. 1, Wiley, New York, 1994.
[16] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate
Distributions, Vol. 2, Wiley, New York, 1995.
[17] C. D. Lai and M. Xie, Stochastic Ageing and Dependence for
Reliability, Springer-Verlag, New York, 2006.
[18] J. F. Lawless, Statistical Models and Methods for Lifetime Data,
Wiley, New York, 1982.
[19] L. Le Cam and J. Neyman, Probability Models and Cancer,
North-Holland, Amsterdam, 1982.
[20] E. T. Lee, Statistical Methods for Survival Data Analysis, 2nd
Edition, Wiley, New Jersey, 1992.
[21] M. Y. Lee and J. Tang, A modified em-algorithm for estimating the
parameters of inverse Gaussian distribution based on time-censored
Wiener degradation data, Statistica Sinica 17 (2007), 873-893.
[22] C. J. Lu and W. Q. Meeker, Using degradation measures to estimate
a time-to failure distribution, Technometrics 35 (1993), 161-174.
[23] G. S. Mudholkar and G. D. Kollia, Generalized Weibull family: A
structural analysis, Communications in Statistics – Theory and
Methods 23 (1994), 1149-1171.
[24] D. N. P. Murthy, M. Xie and R. Jiang, Weibull Models, Wiley,
Hoboken, New Jersey, 2004.
[25] S. S. Olin, D. A. Neumann, J. A. Foran and G. J. Scarano, Topics
in cancer risk assessment, Environmental Health Perspectives 105
(1997), 117-126.
[26] E. V. Slud and J. Suntornchost, Parametric survival densities
from phase-type models, Lifetime Data Anal. 20 (2014), 459-480.
[27] M. A. Stephens, Edf statistics for goodness of fit and some
comparisons, Journal of the American Statistical Association 69
(1974), 730-737.
[28] E. Vargo, R. Pasupathy and L. M. Leemis, Moment-ratio diagrams
for univariate distributions, Journal of Quality Technology 42 (2010),
276-286.
[29] P. Vilmos and E. Kurucz, Insect immunity: Evolutionary roots of
the mammalian innate immune system, Immunology Letters 62 (1998),
59-66.