[1] V. P. Bhapkar and J. N. Darroch, Marginal symmetry and quasi
symmetry of general order, Journal of Multivariate Analysis 34 (1990),
173-184.
[2] Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice, Cambridge: The MIT Press,
1975.
[3] A. H. Bowker, A test for symmetry in contingency tables, Journal
of the American Statistical Association 43 (1948), 572-574.
[4] H. Caussinus, Contribution à l’analyse statistique des
tableaux de correlation, Annales de la Faculté des Sciences de
l’Université de Toulouse 29 (1965), 77-182.
[5] J. N. Darroch and S. D. Silvey, On testing more than one
hypothesis, Annals of Mathematical Statistics 34 (1963), 555-567.
[6] J. N. Darroch and D. Ratcliff, Generalized iterative scaling for
log-linear models, Annals of Mathematical Statistics 43 (1972),
1470-1480.
[7] L. A. Goodman, Association models and the bivariate normal for
contingency tables with ordered categories, Biometrika 68 (1981),
347-355.
[8] M. Haber, Maximum likelihood methods for linear and log-linear
models in categorical data, Computational Statistics and Data Analysis
3 (1985), 1-10.
[9] S. J. Haberman, The Analysis of Frequency Data, The University of
Chicago Press, 1974.
[10] K. Iki, A. Shibuya and S. Tomizawa, Extended diagonal exponent
symmetry model and its orthogonal decomposition in square contingency
tables with ordered categories, Open Journal of Statistics 5 (2015),
262-272.
[11] K. Iki, K. Yamamoto and S. Tomizawa, Quasi-diagonal exponent
symmetry model for square contingency tables with ordered categories,
Statistics and Probability Letters 92 (2014), 33-38.
[12] S. Kullback, Marginal homogeneity of multidimensional contingency
tables, Annals of Mathematical Statistics 42 (1971), 594-606.
[13] C. B. Read, Partitioning chi-square in contingency table: A
teaching approach, Communications in Statistics-Theory and Methods 6
(1977), 553-562.
[14] A. Stuart, A test for homogeneity of the marginal distributions
in a two-way classification, Biometrika 42 (1955), 412-416.
[15] K. Tahata and S. Tomizawa, Symmetry and asymmetry models and
decompositions of models for contingency tables, SUT Journal of
Mathematics 50 (2014), 131-165.
[16] S. Tomizawa, A model of symmetry with exponents along every
subdiagonal and its application to data on unaided vision of pupils at
Japanese elementary schools, Journal of Applied Statistics 19 (1992),
509-512.