[1] R. D. Gupta and D. Kundu, Generalized exponential distributions,
Australian and New Zealand Journal of Statistics 41 (1999),
173-188.
[2] R. D. Gupta and D. Kundu, Generalized exponential distributions:
Existing results and some recent developments, Journal of Statistical
Planning and Inference 137 (2007), 3537-3547.
[3] M. E. Ghitany, M. E. B. Atieh and S. Nadarajah, Lindley
distribution and its application, Mathematics and Computers in
Simulation 78 (2008), 493-506.
[4] M. Sankaran, The discrete Poisson-Lindley distribution, Biometrics
26 (1970), 145-149.
[5] J. Mazucheli and J. A. Achcar, The Lindley distribution applied to
competing risks lifetime data, Computer Methods and Programs in
Biomedicine 104 (2011), 188-192.
[6] M. E. Ghitany and D. K. AL-Mutairi, Size-biased Poisson-Lindley
distribution and its applications, Metron.-Int. J. Stat. LXVI (3)
(2008), 299-311.
[7] M. E. Ghitany, D. K. Al-Mutairi and S. Nadarajah, Zero-truncated
Poisson-Lindley distribution and its application, Mathematics and
Computers in Simulation 79 (2007), 279-287.
[8] H. S. Bakouch, B. M. Al-Zahrani, A. A. AL-Shomrani, V. A. A.
Marchi and F. Louzada, An extended Lindley distribution, Journal of
Korean Statistical Society 41 (2012), 75-85.
[9] M. E. Ghitany, F. Al-Qallaf, D. K. Al-Mutairi and H. A. Hussain, A
two parameter weighted Lindley distribution and its applications to
survival data, Mathematics and Computers in Simulation 81 (2010),
1190-1201.
[10] M. E. Ghitany and D. K. Al-Mutairi, Estimation methods for the
discrete Poisson-Lindley distribution, Journal of Statistical
Computations and Simulation 79 (2009), 1-9.
[11] S. Rama and A. Mishra, A quasi Lindley distribution, African
Journal of Mathematics and Computer Science Research 6(4) (2013),
64-71.
[12] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan and L. J.
Al-Enezi, Power Lindley distribution and associated inference,
Computational Statistics and Data Analysis 64 (2013), 20-33.
[13] H. Zakerzadah and A. Dolati, Generalized Lindley distribution,
Journal of Math. Ext. 3(2) (2009), 13-25.
[14] I. Elbatal and M. Elgarhy, Statistical properties of Kumaraswamy
quasi Lindley distribution, International 4 (2013), 237-246.
[15] S. Cakmakyapan and G. O. Kadilar, A new customer lifetime
duration distribution, The Kumaraswamy Lindley distribution,
International Journal of Trade, Economics and Finance 5 (2014),
441-444.
[16] P. Kumaraswamy, A generalized probability density function for
double bounded random process, Journal of Hydrology 462 (1980),
79-88.
[17] M. C. Jones, Kumaraswamy’s distribution: A beta-type
distribution with some tractability advantages, Statistical
Methodology 6 (2009), 70-81.
[18] G. M. Cordeiro and M. Castro, A new family of generalized
distributions, Journal of Statistical Computation and Simulation 81
(2010), 883-898.
[19] G. M. Cordeiro, E. M. M. Ortega and S. Nadarajah, The Kumaraswamy
Weibull distribution with application to failure data, Journal of the
Franklin Institute 347(8) (2010), 1399-1429.
[20] M. Bourguignon, R. B. Silva, L. M. Zea and G. M. Cordeiro, The
Kumaraswamy Pareto distribution, Journal of Statistical Theory and
Applications 12(2) (2013), 129-144.
[21] P. F. Paranaiba, E. M. M. Ortega, G. M. Cordeiro and M. A. de
Pascoa, The Kumaraswamy Burr XII distribution: Theory and practice,
Journal of Statistical Computation and Simulation 83 (2013),
2117-2143.
[22] A. E. Gomes, C. Q. da-Silva, G. M. Cordeiro and E. M. M. Ortega,
A new lifetime model: The Kumaraswamy generalized Rayleigh
distribution, Journal of Statistical Computation and Simulation 84
(2014), 290-309.
[23] M. A. de Pascoa, E. M. M. Ortega and G. M. Cordeiro, The
Kumaraswamy generalized gamma distribution with application in
survival analysis, Statistical Methodology 8(5) ( 2011), 411-433.
[24] D. V. Lindley, Fiducial distributions and Bayes theorem, Journal
of Royal Statistical Society Series B 20 (1958), 102-107.
[25] G. Mudholkar and D. Srivastava, Exponentiated Weibull family for
analyzing bathtub failure data, IEEE Transactions on Reliability 42
(1993), 299-302.
[26] M. M. Nassar and F. H. Eissa, On the exponentiated Weibull
distribution, Communications in Statistics- Theory and Methods 32
(2003), 1317-1336.
[27] M. M. Nassar and F. H. Eissa, Bayesian estimation for the
exponentiated Weibull model, Communications in Statistics - Theory and
Methods 33 (2004), 2343-2362.
[28] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
Academic Press, 1980.
[29] A. Rényi, On Measures of Entropy and Information, In
Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, University of California Press 1
(1961), 547-561.
[30] C. E. Shannon, Prediction and entropy of Printed English, The
Bell System Technical Journal 30 (1951), 50-64.
[31] E. L. Lee and J. W. Wang, Statistical Methods for Survival Data
Analysis, 3rd Edition, Wiley, New York, 2003.