References

CONSISTENT VARIABLE SELECTION IN LARGE REGRESSION MODELS


[1] H. Akaike, Fitting autoregressive models for prediction, Annals of the Institute of Statistical Mathematics 21 (1969), 243-247.

[2] H. Akaike, Information theory and an extension of the maximum likelihood principle, In B. N. Petrov and F. Csaki (ed.), Second international symposium on information theory, Akademia Kiado, Budapest, (1973), 267-281.

[3] J. Chen and Z. Chen, Extended Bayesian information criteria for model selection with large model spaces, Biometrika 95 (2008), 759-771.

[4] G. Diehr and D. R. Hoflin, Approximating the distribution of the sample R2 in best subset regressions, Technometrics 16 (1974), 317-320.

[5] D. P. Foster and E. I. George, The risk inflation criterion for multiple regression, Annals of Statistics 22 (1994), 1947-1975.

[6] E. I. George and D. P. Foster, Calibration and empirical Bayes variable selection, Biometrika 87 (2000), 731-747.

[7] A. Khursheed and K. T. Wallenius, Distribution of a sum of order statistics, Scandinavian Journal of Statistics 6 (1979), 123-126.

[8] Y. Kim, S. Kwon and H. Choi, Consistent model selection criteria on high dimensions, Journal of Machine Learning Research 13 (1012), 1037-1057.

[9] S. Nadarajah, Explicit expressions for moments of order statistics, Bulletin of the Institute of Mathematics, Academia Sinica (New Series) 3 (2008), 433-444.

[10] R. Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.

[11] A. Rényi, On the theory of order statistics, Acta Math. Acad. Science Hungar. 4 (1953), 191-231.

[12] E. Reschenhofer, On subset selection and beyond, Advances and Applications of Statistics 4 (2004), 265-286.

[13] E. Reschenhofer, Discriminating between nonnested models, Far East Journal of Theoretical Statistics 31 (2010), 117-133.

[14] E. Reschenhofer, Criteria for pairwise variable selection, SOP Transactions on Statistics and Analysis 2 (2015).

[15] E. Reschenhofer, D. Preinerstorfer and L. Steinberger, Non-monotonic penalizing for the number of structural breaks, Computational Statistics 28 (2013), 2585-2598.

[16] E. Reschenhofer, M. Schilde, E. Oberecker, E. Payr, H. T. Tandogan and L. M. Wakolbinger, Identifying the determinants of foreign direct investment: A data-specific model selection approach, Statistical Papers 53 (2012), 739-752.

[17] D. Rothman, Letter to the editor, Technometrics 10 (1968), 432.

[18] G. Schwarz, Estimating the dimension of a model, The Annals of Statistics 6 (1978), 461-464.

[19] R. Tibshirani and K. Knight, The covariance inflation criterion for adaptive model selection, Journal of the Royal Statistical Society B (Statistical Methodology) 61 (1999), 529-546.

[20] H. Wang, B. Li and C. Leng, Shrinkage tuning parameter selection with a diverging number of parameters, Journal of the Royal Statistical Society B (Statistical Methodology) 71 (2009), 671-683.

[21] X. Zheng and W.-Y. Loh, A consistent selection criterion for linear models with high-dimensional covariates, Statistica Sinica 7 (1997), 311-325.