References

RELIABILITY TEST PLANS IN THE CASE OF DEPENDENT OBSERVATION BASED ON EXPONENTIAL FAILURE MODEL


[1] M. Aslam and M. Q. Shahbaz, Economic reliability tests plans using the generalized exponential distribution, Journal of Statistics 14 (2007), 52-59.

[2] G. A. Barnard, New methods of quality control, Journal of Royal Statistical Society A 126(2) (1963), 255-258.

[3] I. W. Burr, Statistical Quality Control Method, Marcel Dekker, New York, pp. 82, 1976.

[4] A. J. Duncan, Quality Control and Industrial Statistics (4th Edition) Richard D. Irwin, Homewood, Illinois. 2, 1974.

[5] B. Epstein, Truncated life test in exponential case, Annals Mathematical Statistics 25 (1954), 555-564.

[6] B. Epstein, Statistical life test acceptance procedures, Technometrics 2(4) (1960), 435-446.

[7] H. P. Goode and J. H. K. Kao, Sampling plans based on Weibull distribution, Proceedings of Seventh National Symposium on Reliability and Quality Control, Philadelphia, Pennsylvania (1961), 24-40.

[8] S. Gupta and P. A. Groll, Gamma distribution in acceptance sampling based on life tests, Journal of American Statistical Association 56 (1961), 942-970.

[9] S. S. Gupta, Life test sampling plans for normal and lognormal distributions, Technometrics 4(2) (1962), 155-175.

[10] R. R. L. Kantam and K. Rosaiah, Half logistic distribution in acceptance sampling based on life tests, IAPQR Transaction 23(2) (1998), 117-125.

[11] R. R. L. Kantam, K. Rosaiah and R. G. Srinivasa, Acceptance sampling based on life tests log-logistic model, Journal of Applied Statistics 28 (2001), 121-128.

[12] M. A. Khan and H. M. Islam, On the robustness of reliability characteristic of alpha distributed lifetimes, Economic Quality Control 25(2) (2010), 173-181.

[13] J. Medhi, Stochastic Process, New Age International P Ltd. Publishers (2nd Edition), New Delhi, 83-86, 1999.

[14] P. Nath, Control chart for fraction defective in case of dependent observations, UDC 57 (1976), 69-71.

[15] M. B. Rajarshi and K. V. S. Sampath, Dodge’s CSP-1 for Morkov dependent process using probability sampling, Journal of the Indian Statistical Association 21 (1983), 99-111.

[16] G. S. Rao, M. E. Chitany and R. R. L. Kantam, Reliability test plans for Marshall-Olkin extended exponential distribution, Applied Mathematical Science 3(55) (2009), 2745-2755.

[17] G. S. Rao, Double acceptance sampling plans based on truncated life tests for the Marshall-Olkin extended exponential distribution, Australian Journal of Statistics 40(3) (2011), 169-176.

[18] K. Rosaiah and R. R. L. Kantam, Acceptance sampling based on the inverse Rayleigh distribution, Economic Quality Control 20 (2005), 277- 286.

[19] K. Rosaiah, R. R. L. Kantam and and K. Santosh, Reliability test plans for exponentiated log-logistic distribution, Economic Quality Control 21(2) (2006), 165-175.

[20] G. Shankar and D. K. Gangeshwer, Cumulative sum control charts for retentive production processes, Assam Statistical Review 19(2) (2005), 117-128.

[21] H. R. Singh and J. R. Singh, Variable sampling plan under second order autoregressive model, IAPQR Transaction 7(2) (1982), 97-104.

[22] H. R. Singh and J. R. Singh, Variable sampling plan under first order autoregressive model, Journal of National Academy Mathematics 4 (1986), 73-80.

[23] B. Singh, K. K. Sharma and D. Tyagi, Acceptance sampling plan based on truncated life tests for compound Rayleigh distribution, Journal of Reliability and Statistical Studies 6(2) (2013), 1-15.

[24] G. V. Sriramachandran, Double acceptance sampling plan for time truncated life tests based on Burr type XII distribution, Applied Mathematical Sciences 7(67) (2013), 3345-3354.

[25] Y. H. Wang, On the limit of Markov-Bernoulli distribution, Jour. Appl. Probability 18 (1981), 937-942.