References

ON OBJECTIVE AND STRONG OBJECTIVE CONSISTENT ESTIMATES OF UNKNOWN PARAMETERS FOR STATISTICAL STRUCTURES IN A POLISH GROUP ADMITTING AN INVARIANT METRIC


[1] R. Balka, Z. Buczolich and M. Elekes, Topological Hausdorff dimension and level sets of generic continuous functions on fractals, Chaos Solitons Fractals 45(12) (2012), 1579-1589; MR3000710.

[2] J. R. Christensen, Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, Publ. Dep. Math. 10(2) (1973), 29-39; MR0361770.

[3] J. R. Christensen, Topology and Borel Structure, North-Holland Publishing Company, Amsterdam, 1974; MR0348724.

[4] J. Cohen, The earth is round American Psychologist 49(12) (1994), 997-1003.

[5] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73-88; MR1271479.

[6] H. L. Lavoie, S. A. Mulaik and J. H. Steiger, What if there were no Significance Tests?, Lawrence Erlbaum Associates, 1997.

[7] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: A translation-invariant “almost every” on infinite-dimensional spaces, Bulletin (New Series) of the American Mathematical Society 27(2) (1992), 217-238; MR1161274.

[8] Kaisan High Accuracy Calculation, Cauchy distribution (percentile)

http://keisan.casio.com/has10/SpecExec.cgi

[9] A. B. Kharazishvili, Topologicheskie aspekty teorii mery, (Russian), [Topological Aspects of Measure Theory] Naukova Dumka, Kiev, 1984; MR0784614.

[10] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974; MR0419394.

[11] J. Mycielski and S. Swierczkowski, On the Lebesgue measurability and the axiom of determinateness, Fund. 54 (1964), 67-71; MR0161788.

[12] J. Mycielski, Some unsolved problems on the prevalence of ergodicity, instability, and algebraic independence, Ulam Quart. 1(3) (1992), 30 ff., approx. 8 pp. (Electronic only); MR1208681.

[13] E. Nadaraya, On non-parametric estimates of density functions and regression curves, Theor. Prob. Appl. 10 (1965), 186-190.

[14] J. Nunnally, The place of statistics in psychology, Educational and Psychological Measurement 20(4) (1960), 641-650.

[15] G. R. Pantsulaia, On separation properties for families of probability measures, Georgian Math. J. 10(2) (2003), 335-342; MR2009981.

[16] G. R. Pantsulaia, Invariant and quasiinvariant measures in infinite-dimensional topological vector spaces, Nova Science Publishers Inc., New York, 2007; MR2527890.

[17] G. Pantsulaia, On a certain partition of the non-locally compact abelian Polish group Proc. A. Razmadze Math. Inst. 149 (2009), 75-86; MR2597356.

[18] G. Pantsulaia and M. Kintsurashvili, Why is null hypothesis rejected for “almost every” infinite sample by some hypothesis testing of maximal reliability?, Journal of Statistics: Advances in Theory and Applications 11(1) (2014), 45-70.

http://www.scientificadvances.co.in

[19] G. Pantsulaia and M. Kintsurashvili, An effective construction of the strong objective infinite sample well-founded estimate, Proc. A. Razmadze Math. Ins. 166 (2014), 113-119.

[20] G. Pantsulaia and M. Kintsurashvili, An objective infinite sample well-founded estimates of a useful signal in the linear one-dimensional stochastic model, Rep. Enlarged Sess. Semin, I. Vekua Appl. Math. 28 (2014), (Accepted).

[21] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, Textit. Ann. Math. Statist. 27 (1956), 832-837; MR0079873.

[22] E. F. Schuster, Estimation of a probability density function and its derivatives, Ann. Math. Statist. 40 (1969), 1187-1195; MR0247723.

[23] Albert N. Shiryaev, Problems in Probability, Translated by Andrew Lyasoff, Problem Books in Mathematics, Springer, New York, 2012; MR2961901.

[24] S. Solecki, On Haar null sets, Fund. Math. 149(3) (1996), 205-210; MR1383206.

[25] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (1970), 1-56; MR0265151.

[26] I. Sh. Ibramkhallilov and A. V. Skorokhod, On Well-off Estimates of Parameters of Stochastic Processes (in Russian), Naukova Dumka, Kiev, 1980.

[27] Z. Zerakidze, G. Pantsulaia and G. Saatashvili, On the separation problem for a family of Borel and Baire G-powers of shift-measures on R, Ukrainian Math. J. 65(4) (2013), 470-485; MR3125005.