[1] Steven W. Smith, The Scientist and Engineer’s Guide to
Digital Signal Processing, Chapter 34, Explaining Benford’s
Law, Retrieved 15 December 2012.
[2] R. M. Fewster, A simple explanation of Benford’s law, The
American Statistician 63(1) (2009), 26-32.
[3] Paul H. Kvam and Brani Vidakovic, Nonparametric Statistics with
Applications to Science and Engineering, p. 158.
[4] Frank Benford, The law of anomalous numbers, Proceedings of the
American Philosophical Society 78(4) (1938), 551-572.
[5] Simon Newcomb, Note on the frequency of use of the different
digits in natural numbers, American Journal of Mathematics 4(1/4)
(1881), 39-40.
[6] Theodore P. Hill, A statistical derivation of the
significant-digit law (PDF), Statistical Science 10 (1995),
354-363.
[7] Arno Berger and Theodore P Hill, Benford’s Law Strikes
Back: No Simple Explanation in Sight for Mathematical Gem, 2011.
[8] Theodore P. Hill, The first digit phenomenon, (PDF), American
Scientist 86(4) (1998), 358.
[9] Roger S. Pinkham, On the distribution of first significant digits,
Ann. Math. Statist. 32(4) (1961), 1223-1230.
[10] A. K. Formann and Richard James Morris, ed., The Newcomb-Benford
law in its relation to some common distributions, PLoS ONE 5(5)
(2010).
[11] L. M. Leemis, B. W. Schmeiser and D. L. Evans, Survival
distributions satisfying Benford’s law, The American
Statistician 54(4) (2000), 236-241.
[12] L. Dümbgen and C. Leuenberger, Explicit bounds for the
approximation error in Benford’s law, Elect. Comm. in Probab.
13 (2008), 99-112.
[13] R. A. Raimi, The first digit problem, American Mathematical
Monthly 83 (1976), 521-538.
[14] C. Durtschi, W. Hillison and C. Pacini, The effective use of
Benford’s law to assist in detecting fraud in accounting data,
J. Forensic Accounting 5 (2004), 17-34.
[15] David M. Pozar, Microwave Engineering, Addison-Wesley Publishing
Company, 1993.
[16] D. C. Giancoli, Physics for Scientists and Engineers, 2nd
Edition, Prentice Hall, 1988.